TCN(Temporal Convolutional Network)

时域卷积网络

参考论文:Temporal Convolutional Networks for Action Segmentation and Detection

1. 任务和模型简介

       本文讲述了对于视频中人类动作片段的切分与检测任务应用了TCN的编码器解码器架构。Action segmentation and detection任务主要是用于将视频中人物在不同时段的动作切分出来,并进行识别。据说在监控和机器人行为的研究中比较有用。
       TCN全称为Temporal convolutional network,中文为时域卷积网络,融合了时域上的建模能力,卷积的低参数量下的特征提取能力。本文提出的TCN encoder-decoder如下图所示。

TCN encoder-decoder

        使用TCN对任务进行建模的好处:
        1.比基于LSTM的循环神经网络模型训练更快,因为RNN存在时序上的计算连接;
        2.TCN更加擅长捕捉时序上的依赖关系,而且因为使用了卷积,可以捕捉到局部信息。
        3. 感受野的尺寸可以灵活调整。

2. 模型剖析

基本TCN的特征:

  • 计算是layer-wise的,即每个时刻被同时计算,而非时序上串行。
  • 卷积是跨时域进行的。
  • predictions at each frame are a function of a fixed-length period of time, which is referred to as the receptive field。
  • 可实现接收任意长度的输入序列作为输入,同时将其映射为等长的输出序列,这方面比较像RNN。

TCN的基本结构:

TCN的输入:视频特征的集合,从视频的每一帧中提取。对于时刻t来说,对应了第t个帧,每个时刻会提取出来一个特征向量。对于整个视频,提取出来的是一个特征向量的序列。对于每一帧,都有一个对应的正确的动作标签(action label)。输出是和输入等长的序列。

因果卷积(causal convolution)convolutions where an output at time t is convolved only with elements from time t and earlier in the previous layer。


Causal Convolution:1-D FCN + causal convolution

扩大卷积(dilated convolution)是通过跳过部分输入来使filter可以应用于大于filter本身长度的区域。等同于通过增加零来从原始filter中生成更大的filter。

Dilated Causal TCN

3. FCN 全卷积网络

FCN同CNN的区别:

FCN

全连接层转换为卷积层:

假设一个卷积神经网络的输入是224x224x3的图像,一系列的卷积层和下采样层将图像数据变为尺寸为7x7x512数据形式。AlexNet使用了两个尺寸为4096的全连接层,最后一个有1000个神经元的全连接层用于计算分类评分。我们可以将这3个全连接层转化为卷积层:

  • 针对第一个连接区域是[7x7x512]的全连接层,令其滤波器尺寸为(7*7),这样输出数据体就为[1x1x4096]了。
  • 针对第二个全连接层,令其滤波器尺寸为(1*1),这样输出数据形状为[1x1x4096]。
  • 对最后一个全连接层也做类似的,滤波器尺寸为(1*1),最终输出数据形状为[1x1x1000]。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容