十大经典排序算法

前言

算法里最常用的也是最基本的就是排序算法和查找算法了,本文主要介绍十大经典排序算法的实现原理。

相关术语

1、稳定排序:如果 a 原本在 b 的前面,且 a == b,排序之后 a 仍然在 b 的前面,则为稳定排序。

2、非稳定排序:如果 a 原本在 b 的前面,且 a == b,排序之后 a 可能不在 b 的前面,则为非稳定排序。

3、时间复杂度:一个算法执行所消耗的时间。

4、空间复杂度:运行完一个算法所需的内存大小。

冒泡排序

实现原理:把数组里的第一个元素与第二个元素比较,如果第一个比第二个大,则交换他们的位置。接着继续比较第二个与第三个元素,如果第二个比第三个大,则交换他们的位置....指导数组有序。

image
 public static int[] bubbleSort(int[] array) {
      if (array.length == 0)
          return array;
      for (int i = 0; i < array.length; i++)
          for (int j = 0; j < array.length - 1 - i; j++)
              if (array[j + 1] < array[j]) {
                  int temp = array[j + 1];
                  array[j + 1] = array[j];
                  array[j] = temp;
              }
      return array;
  }

选择排序

实现原理:首先,找到数组中最小的元素,把它与数组里的第一个元素交换。然后找到数组中剩余元素里最小的,与数组的第二个元素交换。以此类推,直到整个数组有序。

image
public static int[] selectionSort(int[] array) {
        if (array.length == 0)
             return array;
        for (int i = 0; i < array.length; i++) {
            int minIndex = i;
            for (int j = i; j < array.length; j++) {
                if (array[j] < array[minIndex]) //找到最小的数
                    minIndex = j; //将最小数的索引保存
            }
            int temp = array[minIndex];
            array[minIndex] = array[i];
            array[i] = temp;
        }
        return array;
    }

插入排序

实现原理:首先就默认数组中的第一个数的位置是正确的,即已经排序。 然后取下一个数,与已经排序的数按从后向前的顺序依次比较, 如果该数比当前位置排好序的数小,则将排好序的数的位置向后移一位。 重复上一步骤,直到找到合适的位置。 找到位置后就结束比较的循环,将该数放到相应的位置。

image
public static int[] insertionSort(int[] array) {
        if (array.length == 0)
            return array;
        int current;
        for (int i = 0; i < array.length - 1; i++) {
            current = array[i + 1];
            int preIndex = i;
            while (preIndex >= 0 && current < array[preIndex]) {
                array[preIndex + 1] = array[preIndex];
                preIndex--;
            }
            array[preIndex + 1] = current;
        }
        return array;
    }

希尔排序

实现原理:可以将希尔排序叫做缩小增量排序,它是插入排序的一种更高效的改进版本。它与简单插入排序不同的是,它优先比较距离较远的元素。希尔排序通过将比较的全部元素分为几个区域来提升插入排序的性能。它的基本思想是:将待排序列表按下标的一定增量分组(比如增量为2时,下标1,3,5,7为一组,下标2,4,6,8为另一组),各组内进行直接插入排序;随着增量的越来越小,每组所包含的数字序列越来越多,当增量减至1时,整个序列被分成一个组,排序就完成了了。

image
 public static int[] ShellSort(int[] array) {
        int len = array.length;
        int temp, gap = len / 2;
        while (gap > 0) {
            for (int i = gap; i < len; i++) {
                temp = array[i];
                int preIndex = i - gap;
                while (preIndex >= 0 && array[preIndex] > temp) {
                    array[preIndex + gap] = array[preIndex];
                    preIndex -= gap;
                }
                array[preIndex + gap] = temp;
            }
            gap /= 2;
        }
        return array;
    }

归并排序

实现原理:归并排序的递归实现是算法设计中分治策略的典型应用,它的基本思想是:递归的将两个已排序的序列合并成一个序列。

image
/**
     * 归并排序
     *
     * @param array
     * @return
     */
    public static int[] MergeSort(int[] array) {
        if (array.length < 2) return array;
        int mid = array.length / 2;
        int[] left = Arrays.copyOfRange(array, 0, mid);
        int[] right = Arrays.copyOfRange(array, mid, array.length);
        return merge(MergeSort(left), MergeSort(right));
    }
    /**
     * 归并排序——将两段排序好的数组结合成一个排序数组
     *
     * @param left
     * @param right
     * @return
     */
    public static int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        for (int index = 0, i = 0, j = 0; index < result.length; index++) {
            if (i >= left.length)
                result[index] = right[j++];
            else if (j >= right.length)
                result[index] = left[i++];
            else if (left[i] > right[j])
                result[index] = right[j++];
            else
                result[index] = left[i++];
        }
        return result;
    }

快速排序

实现原理:通过一趟排序将待排序列表分割成独立的两部分,其中一部分的所有元素都比另一部分小,然后再按此方法将独立的两部分分别继续重复进行此操作,这个过程我们可以通过递归实现,从而达到最终将整个列表排序的目的。

image
public static int[] QuickSort(int[] array, int start, int end) {
    if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;
    int smallIndex = partition(array, start, end);
    if (smallIndex > start)
        QuickSort(array, start, smallIndex - 1);
    if (smallIndex < end)
        QuickSort(array, smallIndex + 1, end);
    return array;
}
/**
 * 快速排序算法——partition
 * @param array
 * @param start
 * @param end
 * @return
 */
public static int partition(int[] array, int start, int end) {
    int pivot = (int) (start + Math.random() * (end - start + 1));
    int smallIndex = start - 1;
    swap(array, pivot, end);
    for (int i = start; i <= end; i++)
        if (array[i] <= array[end]) {
            smallIndex++;
            if (i > smallIndex)
                swap(array, i, smallIndex);
        }
    return smallIndex;
}
 
/**
 * 交换数组内两个元素
 * @param array
 * @param i
 * @param j
 */
public static void swap(int[] array, int i, int j) {
    int temp = array[i];
    array[i] = array[j];
    array[j] = temp;
}

基数排序

实现原理:将所有待比较正整数统一为同样的数位长度,数位较短的数前面补零。然后,从最低位(个,十,百...依次进行)开始进行基数为10的计数排序,一直到最高位计数排序完后,数列就变成一个有序序列。

image
public static int[] RadixSort(int[] array) {
        if (array == null || array.length < 2)
            return array;
        // 1.先算出最大数的位数;
        int max = array[0];
        for (int i = 1; i < array.length; i++) {
            max = Math.max(max, array[i]);
        }
        int maxDigit = 0;
        while (max != 0) {
            max /= 10;
            maxDigit++;
        }
        int mod = 10, div = 1;
        ArrayList<ArrayList<Integer>> bucketList = new ArrayList<ArrayList<Integer>>();
        for (int i = 0; i < 10; i++)
            bucketList.add(new ArrayList<Integer>());
        for (int i = 0; i < maxDigit; i++, mod *= 10, div *= 10) {
            for (int j = 0; j < array.length; j++) {
                int num = (array[j] % mod) / div;
                bucketList.get(num).add(array[j]);
            }
            int index = 0;
            for (int j = 0; j < bucketList.size(); j++) {
                for (int k = 0; k < bucketList.get(j).size(); k++)
                    array[index++] = bucketList.get(j).get(k);
                bucketList.get(j).clear();
            }
        }
        return array;
    }

计数排序

实现原理:对于给定的输入序列中的每一个元素x,确定该序列中值小于x的元素的个数(此处并非比较各元素的大小,而是通过对元素值的计数和计数值的累加来确定)。一旦有了这个信息,就可以将x直接存放到最终的输出序列的正确位置上。

例如,如果输入序列中只有17个元素的值小于x的值,则x可以直接存放在输出序列的第18个位置上。当然,如果有多个元素具有相同的值时,我们不能将这些元素放在输出序列的同一个位置上,因此,上述方案还要作适当的修改

image
public static int[] CountingSort(int[] array) {
        if (array.length == 0) return array;
        int bias, min = array[0], max = array[0];
        for (int i = 1; i < array.length; i++) {
            if (array[i] > max)
                max = array[i];
            if (array[i] < min)
                min = array[i];
        }
        bias = 0 - min;
        int[] bucket = new int[max - min + 1];
        Arrays.fill(bucket, 0);
        for (int i = 0; i < array.length; i++) {
            bucket[array[i] + bias]++;
        }
        int index = 0, i = 0;
        while (index < array.length) {
            if (bucket[i] != 0) {
                array[index] = i - bias;
                bucket[i]--;
                index++;
            } else
                i++;
        }
        return array;
    }

桶排序

实现原理

1、设置定量列表(数组)当作空桶

2、遍历待排序序列,将数据一个一个放到对应的桶里面

3、对每个非空桶进行排序(本片博客桶内采用直接插入排序,当然大家也可以用其他排序试一试)

4、把排好序的非空桶里的序列拼接在一起

image
public static ArrayList<Integer> BucketSort(ArrayList<Integer> array, int bucketSize) {
        if (array == null || array.size() < 2)
            return array;
        int max = array.get(0), min = array.get(0);
        // 找到最大值最小值
        for (int i = 0; i < array.size(); i++) {
            if (array.get(i) > max)
                max = array.get(i);
            if (array.get(i) < min)
                min = array.get(i);
        }
        int bucketCount = (max - min) / bucketSize + 1;
        ArrayList<ArrayList<Integer>> bucketArr = new ArrayList<>(bucketCount);
        ArrayList<Integer> resultArr = new ArrayList<>();
        for (int i = 0; i < bucketCount; i++) {
            bucketArr.add(new ArrayList<Integer>());
        }
        for (int i = 0; i < array.size(); i++) {
            bucketArr.get((array.get(i) - min) / bucketSize).add(array.get(i));
        }
        for (int i = 0; i < bucketCount; i++) {
            if (bucketSize == 1) { // 如果带排序数组中有重复数字时  感谢 @见风任然是风 朋友指出错误
                for (int j = 0; j < bucketArr.get(i).size(); j++)
                    resultArr.add(bucketArr.get(i).get(j));
            } else {
                if (bucketCount == 1)
                    bucketSize--;
                ArrayList<Integer> temp = BucketSort(bucketArr.get(i), bucketSize);
                for (int j = 0; j < temp.size(); j++)
                    resultArr.add(temp.get(j));
            }
        }
        return resultArr;
    }

堆排序

实现原理

1、将待排序列表构造成一个最大堆,作为初始无序堆(即初始无序列表)

2、将堆顶元素(最大值)与堆尾元素互换

3、将该堆(无序区)尺寸缩小1,并对缩小后的堆重新调整为最大堆形式

4、重复上述步骤,直至堆(无序区)的尺寸变为1,此时排序完成

image
static int len;
    /**
     * 堆排序算法
     *
     * @param array
     * @return
     */
    public static int[] HeapSort(int[] array) {
        len = array.length;
        if (len < 1) return array;
        //1.构建一个最大堆
        buildMaxHeap(array);
        //2.循环将堆首位(最大值)与末位交换,然后在重新调整最大堆
        while (len > 0) {
            swap(array, 0, len - 1);
            len--;
            adjustHeap(array, 0);
        }
        return array;
    }
    /**
     * 建立最大堆
     *
     * @param array
     */
    public static void buildMaxHeap(int[] array) {
        //从最后一个非叶子节点开始向上构造最大堆
        for (int i = (len/2 - 1); i >= 0; i--) { //感谢 @让我发会呆 网友的提醒,此处应该为 i = (len/2 - 1) 
            adjustHeap(array, i);
        }
    }
    /**
     * 调整使之成为最大堆
     *
     * @param array
     * @param i
     */
    public static void adjustHeap(int[] array, int i) {
        int maxIndex = i;
        //如果有左子树,且左子树大于父节点,则将最大指针指向左子树
        if (i * 2 < len && array[i * 2] > array[maxIndex])
            maxIndex = i * 2;
        //如果有右子树,且右子树大于父节点,则将最大指针指向右子树
        if (i * 2 + 1 < len && array[i * 2 + 1] > array[maxIndex])
            maxIndex = i * 2 + 1;
        //如果父节点不是最大值,则将父节点与最大值交换,并且递归调整与父节点交换的位置。
        if (maxIndex != i) {
            swap(array, maxIndex, i);
            adjustHeap(array, maxIndex);
        }
    }

总结

image
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容

  • 本文首发于我的个人博客:尾尾部落 排序算法是最经典的算法知识。因为其实现代码短,应该广,在面试中经常会问到排序算法...
    繁著阅读 4,572评论 3 119
  • 1.插入排序—直接插入排序(Straight Insertion Sort) 基本思想: 将一个记录插入到已排序好...
    依依玖玥阅读 1,245评论 0 2
  • 一、前言 如果说各种编程语言是程序员的招式,那么数据结构和算法就相当于程序员的内功。 想写出精炼、优秀的代码,不通...
    诸葛青云999阅读 1,086评论 0 2
  • 排序的基本概念 在计算机程序开发过程中,经常需要一组数据元素(或记录)按某个关键字进行排序,排序完成的序列可用于快...
    Jack921阅读 1,423评论 1 4
  • 简单来说,时间复杂度指的是语句执行次数,空间复杂度指的是算法所占的存储空间 时间复杂度计算时间复杂度的方法: 用常...
    Teci阅读 1,094评论 0 1