Flink1.8 集群搭建完全指南(1):Hadoop伪分布式

Flink是目前在国内非常流行的大数据的计算框架,其设计理念可以完美的实现数据的批流计算一体化。Flink的集群,如果要使用到JobManager的HA,以及Yarn的资源调度的话,整体的部署过程还是比较复杂的。本系列文章将完整介绍Hadoop,Kerberos,SASL,Yarn,以及Flink集群的搭建过程,一步步完成整个系统环境的部署。

Hadoop集群的搭建

Hadoop的HDFS在Flink中用作JobManager的HA,Yarn可以用于Flink任务的资源调度,因此是必不可少的。下面我们先搭建好一个Hadoop的集群。

伪分布式集群

对于一些不熟悉Hadoop集群的搭建的同学,我们先来看下伪分布式集群的搭建,可以快速的熟悉简化的配置过程,以及Hadoop的各配置文件等。

以下是我用于部署该服务的机器:

hostname ip
master 10.16..
1. ssh免密码登录

在伪分布式集群中,所有的服务都在同一节点启动,但它们之间也同样通过ssh的方式访问,所以需要配置ssh免密码登录,配置的方式如下:

$ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
$ chmod 0600 ~/.ssh/authorized_keys

测试以下命令,成功跳转即可:

$ ssh localhost
2. 下载并解压Hadoop的jar包
$ tar -xvf hadoop-2.8.5.tar.gz
3. 配置文件修改
  • 配置HDFS相关配置文件:
  1. 配置etc/hadoop/core-site.xml
<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://localhost:9000</value>
    </property>
</configuration>
  1. 配置etc/hadoop/hdfs-site.xml
<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
</configuration>
  • 配置Yarn相关配置文件:
  1. 配置etc/hadoop/mapred-site.xml
<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>
  1. 配置etc/hadoop/yarn-site.xml
<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
</configuration>
4. 启动服务
  • 启动HDFS:先进行HDFS Namenode格式化,然后启动NameNode和DataNode。访问NameNode的Web页面:http://localhost:50070/,可以看到NameNode和1个DataNode,HDFS启动成功。
$ bin/hdfs namenode -format
$ sbin/start-dfs.sh
HDFS
  • 启动Yarn:直接启动ResourceManager和NodeManager。访问Yarn的Web页面:http://localhost:8088/,可以看到一个Active Nodes,Yarn启动成功。
$ sbin/start-yarn.sh
5. 运行Hadoop任务

在集群搭建完成后,可以运行Hadoop的示例任务,检查集群是否能够正常工作,命令如下:

$ ./bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.8.5.jar pi 3 3

该程序会打印PI的值,则执行成功。在Yarn的Web页面,可以看到有一个成功的Application。

yarn

下一节我们会介绍Hadoop的分布式集群,Kerberos和SASL等的部署。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,284评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,115评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,614评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,671评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,699评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,562评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,309评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,223评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,668评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,859评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,981评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,705评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,310评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,904评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,023评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,146评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,933评论 2 355