大纲
- 选取列 select
- 常数列 lit
- 条件分支 when otherwise
- 数学函数
- 时间函数
- 窗口函数 row_number
- 自定义函数 udf
- split & exploda
本文主要是列举一些pyspark中类似于sql的相关函数,以及如何自定义函数。首先,创建一个dataframe。以下都是在pyspark的交互界面下执行,版本为2.1.1
from pyspark.sql import Row
from pyspark.sql import functions as sf
rdd = sc.parallelize([Row(name='Alice', level='a', age=5, height=80),Row(name='Bob', level='a', age=5, height=80),Row(name='Cycy', level='b', age=10, height=80),Row(name='Didi', level='b', age=12, height=75),Row(name='EiEi', level='b', age=10, height=70)])
df = rdd.toDF()
print df.show()
"""
+---+------+-----+-----+
|age|height|level| name|
+---+------+-----+-----+
| 5| 80| a|Alice|
| 5| 80| a| Bob|
| 10| 80| b| Cycy|
| 12| 75| b| Didi|
| 10| 70| b| EiEi|
+---+------+-----+-----+
"""
1. 选取列 select
除了选取现有的列,还可以增加新列,并且还可以将列的顺序重排。
df1 = df.select("name", (df.age+1).alias("new_age"))
print df1.show()
"""
+-----+-------+
| name|new_age|
+-----+-------+
|Alice| 6|
| Bob| 6|
| Cycy| 11|
| Didi| 13|
| EiEi| 11|
+-----+-------+
"""
2.常数列 lit
df2 = df.select("name", (df.age+1).alias("new_age"), sf.lit(2))
print df2.show()
"""
+-----+-------+---+
| name|new_age| 2|
+-----+-------+---+
|Alice| 6| 2|
| Bob| 6| 2|
| Cycy| 11| 2|
| Didi| 13| 2|
| EiEi| 11| 2|
+-----+-------+---+
"""
# 也可以重命名
df2 = df.select("name", (df.age+1).alias("new_age"), sf.lit(2).alias("constant"))
print df2.show()
"""
+-----+-------+--------+
| name|new_age|constant|
+-----+-------+--------+
|Alice| 6| 2|
| Bob| 6| 2|
| Cycy| 11| 2|
| Didi| 13| 2|
| EiEi| 11| 2|
+-----+-------+--------+
"""
当然新增列的方式还可以用withColumn,这里不赘述了。
3.条件分支 when otherwise
当多个条件时,一直使用when进行连接,直到使用otherwise。注意当逻辑判断中出现多个判断,则需单个使用()后再进行&或|连接,比如(df.age>=7)&(df.age<11); 否则会报错。
df3 = df.withColumn("when", sf.when(df.age<7, "kindergarten").when((df.age>=7)&(df.age<11), 'low_grade').otherwise("high_grade"))
print df3.show()
"""
+---+------+-----+-----+------------+
|age|height|level| name| when|
+---+------+-----+-----+------------+
| 5| 80| a|Alice|kindergarten|
| 5| 80| a| Bob|kindergarten|
| 10| 80| b| Cycy| low_grade|
| 12| 75| b| Didi| high_grade|
| 10| 70| b| EiEi| low_grade|
+---+------+-----+-----+------------+
"""
4. 数学函数
数学函数不在此枚举,包括简单的+、-、*、/,log、pow、各三角函数,以及还有round、floor等。具体可见官网 pyspark.sql.functions
5. 时间函数
- 获取时间current_date()、current_timestamp()、
- 格式转换date_format()、year()、month()、等
- 时间运算date_add()、date_sub()等
6. 窗口函数 row_number
from pyspark.sql.window import Window
df_r = df.withColumn('row_number', sf.row_number().over(Window.partitionBy("level").orderBy("age")).alias("rowNum"))
# 其他写法
df_r = df.withColumn('row_number', sf.row_number().over(Window.partitionBy(df.level).orderBy(df.age)).alias("rowNum"))
print df_r.show()
"""
+---+------+-----+-----+----------+
|age|height|level| name|row_number|
+---+------+-----+-----+----------+
| 10| 80| b| Cycy| 1|
| 10| 70| b| EiEi| 2|
| 12| 75| b| Didi| 3|
| 5| 80| a| Bob| 1|
| 5| 80| a|Alice| 2|
"""
表示逆序,或者根据多个字段分组
df_r = df.withColumn('row_number', sf.row_number().over(Window.partitionBy(df.level, df.age).orderBy(sf.desc("name"))).alias("rowNum"))
# 另一种写法
df_r = df.withColumn('row_number', sf.row_number().over(Window.partitionBy("level", "age").orderBy(sf.desc("name"))).alias("rowNum"))
print df_r.show()
"""
+---+------+-----+-----+----------+
|age|height|level| name|row_number|
+---+------+-----+-----+----------+
| 5| 80| a| Bob| 1|
| 5| 80| a|Alice| 2|
| 10| 70| b| EiEi| 1|
| 10| 80| b| Cycy| 2|
| 12| 75| b| Didi| 1|
+---+------+-----+-----+----------+
"""
可是,下面这种写法是错误的。
df_r = df.withColumn('row_number', sf.row_number().over(Window.partitionBy(df.level, df.age).orderBy(sf.desc(df.name))).alias("rowNum"))
"""
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/user/local/spark-2.1.1/python/pyspark/sql/functions.py", line 39, in _
jc = getattr(sc._jvm.functions, name)(col._jc if isinstance(col, Column) else col)
File "/home/user/local/spark-2.1.1/python/lib/py4j-0.10.4-src.zip/py4j/java_gateway.py", line 1133, in __call__
File "/home/user/local/spark-2.1.1/python/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/home/user/local/spark-2.1.1/python/lib/py4j-0.10.4-src.zip/py4j/protocol.py", line 323, in get_return_value
py4j.protocol.Py4JError: An error occurred while calling z:org.apache.spark.sql.functions.desc. Trace:
py4j.Py4JException: Method desc([class org.apache.spark.sql.Column]) does not exist
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:318)
at py4j.reflection.ReflectionEngine.getMethod(ReflectionEngine.java:339)
at py4j.Gateway.invoke(Gateway.java:274)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
"""
7. 自定义函数 udf
udf只能对每一行进行操作,无法对groupBy后的数据处理。
from pyspark.sql import types as st
def ratio(a, b):
if a is None or b is None or b == 0:
r = -1.0
else:
r = 1.0 * a / b
return r
col_ratio = udf(ratio, st.DoubleType())
df_udf = df.withColumn("ratio", col_ratio(df.age, df.height))
print df_udf.show()
"""
+---+------+-----+-----+-------------------+
|age|height|level| name| ratio|
+---+------+-----+-----+-------------------+
| 5| 80| a|Alice| 0.0625|
| 5| 80| a| Bob| 0.0625|
| 10| 80| b| Cycy| 0.125|
| 12| 75| b| Didi| 0.16|
| 10| 70| b| EiEi|0.14285714285714285|
+---+------+-----+-----+-------------------+
"""
2.3版本以后有pandas_udf,用法比udf更多,可以进行groupBy后的聚合。但由于目前我使用的pyspark版本限制,无法进行实验。
8. split & exploda
待补充