智能优化算法:飞蛾扑火优化算法-附代码
@[toc]
摘要:飞饿扑火优 化 算 法 ( Moth-flame optimization algorithm,MFO) 是Seyedali Mirjalili等于2015年提出的一种新型智能优化算法[1]。该算法具有并行优化能力强,全局性优且不易落入局部极值的性能特征,逐渐引起了学术界和工程界的关注。
1.算法原理
飞蛾在夜间飞行时采用横向定位的特殊导航机制。在这种机制中,飞蛾通过维持自身相对月亮的角度固定进行飞行,由于月亮距离飞蛾非常遥远,飞蛾利用这种近似的平行光可以保持直线飞行。虽然这种导航机制对飞蛾非常有效,但实际中存在许多人工或自然点光源,这种光源与月亮相比距离飞蛾非常近,当飞蛾依然与光源保持固定的角度飞行时,就会导致导航失效并且产生致命的螺旋式飞行路径。
在 MFO 算法中,假设飞蛾是求解问题的候选解,待求变量是飞蛾在空间的位置。因此,通过改变其自身的位置向量,飞蛾可以飞行在一维、二维、三维、甚至更高维度的空间。由于 MFO 算法本质上是一种群体智能优化算法,所以飞蛾种群在矩阵中可以表示如下:
其中:代表飞蛾的个数;
代表待求控制变量的个数(问题的维度)。对于这些飞蛾,同样假设存在与之对应的一列适应度值向量,表示如下:
MFO 算法中要求每只飞蛾仅利用与之对应的唯一火焰更新其自身位置,从而避免算法陷入局部极值情况,大大增强了算法的全局搜索能力。因此,搜索空间中飞蛾位置与火焰位置是相同维度的变量矩阵:
在迭代过程中,2 个矩阵中变量的更新策略有所不同。飞蛾实际上是在搜索空间内移动的搜索个体,而火焰则是目前为止所对应的飞蛾能够达到的最优位置。每一只飞蛾个体环绕在一个火焰的周围,一旦搜索到更好的解,便更新为下一代中火焰的位置。
为了对飞蛾扑火的飞行行为进行数学建模,每只飞蛾相对火焰的位置更新机制可采用方程表示 :
其中:表示第 i 只飞蛾;
表示第
个火焰;
表示螺旋函数。该函数满足以下条件:
1)螺旋函数的初始点应从飞蛾开始;
2)螺旋的终点为火焰的位置;
3)螺旋的波动范围不应超过其搜索空间。
其中:表示第 i 只飞蛾与第
个火焰之间的距离;
为所定义的对数螺旋形状常数,路径系数
为[-1,1]中的随机数。
的表达式如下:
其中:代表第
只飞蛾;
代表第
个火焰;
表示第
只飞蛾与第
个火焰的距离。
式(6)模拟了飞蛾螺旋飞行的路径,可以看出,飞蛾更新的下一个位置由其围绕的火焰确定。如 图 1 所示,螺旋函数中系数
1)通过修改参数 ,一只飞蛾可以收敛到火焰的任意的邻域范围内。
2) 越小,飞蛾距离火焰越近。
3)随着飞蛾越来越接近火焰,其在火焰周围更新的频率越来越快。
上述的火焰位置更新机制能够保证飞蛾在火焰周围的局部开发能力。为了提高找到更优解的概率,将当前找到的最优解作为下一代火焰的位置。因此,火焰位置矩阵
若
其中:
2.算法流程
1)MFO 算法初始化,设置输入最优潮流控制变量维度 d,飞蛾种群搜索规模 n,最大迭代次数 T以及对数螺旋形状常数 b 等参数。
2)待求变量初始化,在搜索空间中随机生成飞蛾位置,并评估每只飞蛾对应的适应度值。
3)将飞蛾空间位置以适应度值递增的顺序排序后赋值给火焰,作为第一代中火焰的空间位置。
4)采用式(5)更新当前代飞蛾的位置。
5)将更新后的飞蛾位置与火焰位置的适应度值重新排序,选取适应度值更优的空间位置更新为下一代火焰的位置。
6)以式(8)自适应机制减少火焰的数量。
7)返回步骤 6)进入下一代,直至迭代次数满足算法要求。
10)输出并显示优化结果,程序结束。
3.算法结果
4.参考文献
[1]Seyedali Mirjalili. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems,2015,89.
[2]王子琪,陈金富,张国芳,杨琪,代宇涵.基于飞蛾扑火优化算法的电力系统最优潮流计算[J].电网技术,2017,41(11):3641-3647.
5.MATLAB代码
https://mianbaoduo.com/o/bread/Z5iZl50=
文献复现:基于Levy飞行的飞蛾扑火优化算法(LMFO)
[1]李志明,莫愿斌.基于Lévy飞行的飞蛾扑火优化算法[J].计算机工程与设计,2017,38(03):807-813.
文献复现:基于交叉算子和非均匀变异算子的飞蛾扑火优化算法(CNMFO)
[1]张保东,张亚楠,郭黎明,江进礼,赵严振.基于交叉算子和非均匀变异算子的飞蛾扑火优化算法[J].计算机与数字工程,2020,48(11):2622-2627.
文献复现:结合重心反向变异的飞蛾扑火优化算法(IMFO)
[1]宋婷婷,张琳娜.结合重心反向变异的飞蛾扑火优化算法[J].智能计算机与应用,2020,10(12):104-107+115.