Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”
Given the following binary tree: root = [3,5,1,6,2,0,8,null,null,7,4]
Example:
Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.
Note:
- All of the nodes' values will be unique.
- p and q are different and both values will exist in the binary tree.
解释下题目:
找到两个给定节点的最下面的那个公共祖先。
1. 递归
实际耗时:5ms
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if (root == null || root == p || root == q) {
return root;
}
TreeNode left = lowestCommonAncestor(root.left, p, q);
TreeNode right = lowestCommonAncestor(root.right, p, q);
if (left != null && right != null) {
return root;
}
if (left == null) {
return right;
} else {
return left;
}
}
考虑到树的题目,大概率肯定用递归,简单方便理解。首先对于一个节点,如果它已经是空(说明已经到叶子节点了)或者成功和p和q匹配上了,那就返回它。然后树的左边的节点和右边的节点也如此做即可。最后如果左右两边都不是空,说明找到了答案,如果有一个不是空则返回那个,当然其实如果两个都是空说明没有,但是这道题确保一定有,所以可以这么写。