LSI(LSA)和gensim中的实现

LSI原理

通过SVD将文档与词的TF-IDF的矩阵进行分解。SVD分解后的三个矩阵是文档与主题,主题与词义,词义与词三个矩阵,通过三个矩阵的不同解释,可以实现在降低维度的基础上有意义的解释。

文档与主题矩阵可以实现文档相似度的计算。词义与词的矩阵可以实现词相似度的计算,同时可以表示一意多词的情况。

gensim中LSI的使用

代码实现了bow形式表示语料->将bow中的次数转变成TF-IDF值->使用LSI方法对TF-IDF文档和词组成的矩阵进行分解。最后利用余弦相似度,根据文档和主题矩阵可以实现文档之间相似度的计算。依据就是主题类似的文档的相似度高。

texts = [['human', 'interface', 'computer','human'],

['survey', 'user', 'computer', 'system', 'response', 'time'],

['eps', 'user', 'interface', 'system'],

['system', 'human', 'system', 'eps'],

['user', 'response', 'time'],

['trees'],

['graph', 'trees'],

['graph', 'minors', 'trees'],

['graph', 'minors', 'survey']]

from gensim import corpora

#统计所有独有的词

dictionary = corpora.Dictionary(texts)

print(dictionary)

#把语料变成每个词对应的ID和出现的次数

corpus = [dictionary.doc2bow(text) for text in texts]

print (corpus) # [(0, 1), (1, 1), (2, 1)]

from gensim import models

tfidf = models.TfidfModel(corpus)

doc_bow = [(0, 1), (1, 1)]

print (tfidf[doc_bow]) # [(0, 0.70710678), (1, 0.70710678)]

#TF-IDF也是一种数据表示文本的方式

tfidf.save("./model.tfidf")

tfidf = models.TfidfModel.load("./model.tfidf")

# 构造LSI模型并将待检索的query和文本转化为LSI主题向量

# 转换之前的corpus和query均是BOW向量

query = [(0, 1), (1, 1), (2, 1)]

#这个模型可以把语料中的稀疏的变量编程一个密集的向量,使用一个密集的向量可以表示这个句子

lsi_model = models.LsiModel(corpus, id2word=dictionary, num_topics=2)

documents = lsi_model[corpus]

print(documents[0])

query_vec = lsi_model[query]

from gensim.similarities import MatrixSimilarity

index = MatrixSimilarity(documents)

index.save('/tmp/deerwester.index')

index = MatrixSimilarity.load('/tmp/deerwester.index')

#检查了与所有语料中的余弦相似度

sims = index[query_vec] # return: an iterator of tuple (idx, sim)

print(sims)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,377评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,390评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,967评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,344评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,441评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,492评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,497评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,274评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,732评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,008评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,184评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,837评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,520评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,156评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,407评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,056评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,074评论 2 352