Hive系列之分区表和桶

为提升hive数据的查询和写入性能, hive提供了分区表机制。hive每个表格可以指定多个分区key, 这些分区key决定数据的存储方式,比如表格T有个日期型分区列ds, 表格的数据会存储在:表在hdfs路径/ds=<date>目录下,查询语句中ds='2008-09-01'类似过滤条件,可以直接查询表在hdfs路径/ds=<date>目录下数据, 达到提升性能的目的。
hive提供两种分区表:静态分区和动态分区。两者主要的差别在于:加载数据的时候,动态分区不需要指定分区key的值, 会根据key对应列的值自动分区写入,如果该列值对应的分区目录还没有创建, 会自动创建并写入数据。下面实践演示:

1.静态分区
创建分区表

hive >create table teacher(id INT, name string, tno string)
partitioned by (work_date string)
clustered by (id) sorted by (name) into 2 buckets
row format delimited fields terminated by ',' stored as textfile;

静态分区加载数据

hive>load data local inpath '/home/warehouse/user.txt' overwrite into table teacher partition(work_date="2016-07-12");

其中user.txt内容:
1, t1, 01
2, t2, 02
3, t3, 03
4, t4, 04

分区创建完成后查看hdfs目录

hive>dfs -ls /user/hive/warehouse/crwal_db.db/teacher/
drwxrwxrwx - warehouse supergroup 0 2016-07-12 09:03 /user/hive/warehouse/crawl_db.db/teacher/work_date=2016-07-12

可以看出创建的分区目录

2.动态分区

首先需要设置参数: 动态分区相关参数设置如下

set hive.exec.dynamic.partition=true;(可通过这个语句查看:set hive.exec.dynamic.partition;)
set hive.exec.dynamic.partition.mode=nonstrict; (strict要求至少有一个静态分区, nonstrict可以都是动态分区)
set hive.exec.max.dynamic.partitions=100000;(如果自动分区数大于这个参数,将会报错)
set hive.exec.max.dynamic.partitions.pernode=100000;

创建一个临时表格, 用于加载数据, 然后把临时表格的数据插入到分区表。

hive>create table tmp (
id int, name string, tno string, work_date string)
row format delimited fields terminated by ',' stored as textfile;

本地文件数据

$ cat user1.txt
1,root,01,2016-07-11
2,sys,02,2016-07-11
3,user01,03,2016-07-11
4,user02,04,2016-07-11
5,user03,05,2016-07-11
6,user04,06,2016-06-11
7,user05,07,2016-06-11
8,user06,08,2016-06-11
9,user07,09,2016-06-11
10,user08,10,2016-05-11
11,user09,11,2016-05-11
12,user10,12,2016-05-11

加载数据到临时表

load data local inpath "/home/warehouse/user1.txt" overwrite into table tmp;

从临时表加载数据到分区表

hive>insert into table teacher partition(work_date) select id, name, tno, work_date from tmp;

再次查看hdfs中数据分区

hive>dfs -ls /user/hive/warehouse/crwal_db.db/teacher/
drwxrwxrwx - warehouse supergroup 0 2016-07-12 16:43 /user/hive/warehouse/crawl_db.db/teacher/work_date=2016-05-11
drwxrwxrwx - warehouse supergroup 0 2016-07-12 16:43 /user/hive/warehouse/crawl_db.db/teacher/work_date=2016-06-11
drwxrwxrwx - warehouse supergroup 0 2016-07-12 16:43 /user/hive/warehouse/crawl_db.db/teacher/work_date=2016-07-11

上面的临时表work_date包括三个数据:2016-05-11, 2016-06-11, 2016-07-11,插入到以workdate为分区key的teacher表时, 会自动识别出这三种值,分别创建三个目录。而不需要像静态分区一样每插入一个分区key的数据都要一条如下插入语句:

insert into table teacher partition(work_date="2016-05-11") select id, name, tno, work_date from tmp where work_date="2016-05-11";

需要注意的是:

在一个表同时使用动态和静态分区表时, 静态分区值必须在动态分区值的前面。
选择分区key时,要防止数据倾斜, 数据严重分布不均衡。
使用动态分区, 作为分区列的值要可以预测和枚举, 不能目录过多而每个目录数据又很少,会严重影响性能。

3.桶
对于每一个表(table)或者分区,Hive可以进一步组织成桶。Hive也是针对某一列进行桶的组织。Hive采用对列值哈希,然后除以桶的个数求余的方式决定该条记录存放在哪个桶当中。采用桶好处有两个:

  1. 数据sampling2. 提升某些查询操作效率,例如mapside join
    JOIN操作两个表有一个相同的列,如果对这两个表都进行了桶操作。那么将保存相同列值的桶进行JOIN操作就可以,可以大大较少JOIN的数据量。

hive >create table teacher(id INT, name string, tno string)
partitioned by (work_date string)
clustered by (id) sorted by (name) into 2 buckets
row format delimited fields terminated by ',' stored as textfile;

hive中table可以拆分成partition,table和partition可以通过‘CLUSTERED BY ’进一步分bucket,bucket中的数据可以通过‘SORT BY’排序。如上语句所示, 通过id列把数据分成2个桶, 桶中数据通过name排序。

可以看下分区表里面分成桶以后的文件存储格式:

hive>dfs -ls /user/hive/warehouse/crawl_db.db/teacher/work_date=2016-06-11;
-rwxrwxrwx 3 warehouse supergroup 24 2016-07-12 16:43 /user/hive/warehouse/crawl_db.db/teacher/work_date=2016-06-11/000000_0
-rwxrwxrwx 3 warehouse supergroup 24 2016-07-12 16:43 /user/hive/warehouse/crawl_db.db/teacher/work_date=2016-06-11/000001_0

可见每个分区数据被划分到了两个桶里面。

下面看下桶在数据采样里面的应用:
tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y)

select * from teacher tablesample(bucket 1 out of 2 on id);

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,186评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,858评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,620评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,888评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,009评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,149评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,204评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,956评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,385评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,698评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,863评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,544评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,185评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,899评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,141评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,684评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,750评论 2 351

推荐阅读更多精彩内容