kafka streams的join实例

本文简单介绍一下kafka streams的join操作

join

A join operation merges two streams based on the keys of their data records, and yields a new stream. A join over record streams usually needs to be performed on a windowing basis because otherwise the number of records that must be maintained for performing the join may grow indefinitely.

实例

        KStreamBuilder builder = new KStreamBuilder();
        KStream<String, String> left = builder.stream("intpu-left");
        KStream<String, String> right = builder.stream("intpu-right");

        KStream<String, String> all = left.selectKey((key, value) -> value.split(",")[1])
                .join(right.selectKey((key, value) -> value.split(",")[0]), new ValueJoiner<String, String, String>() {
            @Override
            public String apply(String value1, String value2) {
                return value1 + "--" + value2;
            }
        }, JoinWindows.of(30000));

        all.print();

由于join操作是根据key来,所以通常一般要再次映射一下key

测试

sh bin/kafka-topics.sh --create --topic intpu-left --replication-factor 1 --partitions 3 --zookeeper localhost:2181

sh bin/kafka-topics.sh --create --topic intpu-right --replication-factor 1 --partitions 3 --zookeeper localhost:2181


sh bin/kafka-console-producer.sh --broker-list localhost:9092 --topic intpu-left
sh bin/kafka-console-producer.sh --broker-list localhost:9092 --topic intpu-right

左边输入诸如

1,a
2,b
3,c
3,c
4,d
1,a
2,b
3,c
1,a
2,b
3,c
4,e
5,h
6,f
7,g

右边输入诸如

a,hello
b,world
c,hehehe
c,aaa
d,eee
a,cccc
b,aaaaaa
c,332435
a,dddd
b,2324
c,ddddd
e,23453
h,2222222
f,0o0o0o0
g,ssss

输出实例

[KSTREAM-MERGE-0000000014]: a , 1,a--a,dddd
[KSTREAM-MERGE-0000000014]: b , 2,b--b,2324
2017-10-17 22:17:34.578  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing all tasks because the commit interval 30000ms has elapsed
2017-10-17 22:17:34.578  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 0_0
2017-10-17 22:17:34.585  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 0_1

join类别

这里使用的是inner join,也有left join,也有outer join。如果要记录在时间窗口没有匹配上的记录,可以使用outer join,额外存储下来,然后再根据已经匹配的记录再过滤一次。

输出实例

[KSTREAM-MERGE-0000000014]: f , null--f,ddddddd
[KSTREAM-MERGE-0000000014]: f , 4,f--f,ddddddd
2017-10-17 22:31:12.530  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing all tasks because the commit interval 30000ms has elapsed
2017-10-17 22:31:12.530  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 0_0
2017-10-17 22:31:12.531  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 0_1
2017-10-17 22:31:12.531  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 1_0
2017-10-17 22:31:12.531  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 0_2
2017-10-17 22:31:12.533  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 1_1
2017-10-17 22:31:12.533  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 2_0
2017-10-17 22:31:12.539  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 1_2
2017-10-17 22:31:12.540  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 2_1
2017-10-17 22:31:12.541  INFO   --- [ StreamThread-1] o.a.k.s.p.internals.StreamThread         : stream-thread [StreamThread-1] Committing task StreamTask 2_2
[KSTREAM-MERGE-0000000014]: g , 5,g--null
[KSTREAM-MERGE-0000000014]: h , 6,h--null
[KSTREAM-MERGE-0000000014]: h , 6,h--h,ddddddd

小结

kafka streams的join操作,非常适合不同数据源的实时匹配操作。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 136,224评论 19 139
  • Apache kafka是一个分布式流平台。这到底是什么意思? 我们认为流平台具有三个关键功能: 它允许发布和订阅...
    狼牙战士阅读 3,899评论 0 0
  • Spark SQL, DataFrames and Datasets Guide Overview SQL Dat...
    草里有只羊阅读 18,477评论 0 85
  • Kafka官网:http://kafka.apache.org/入门1.1 介绍Kafka™ 是一个分布式流处理系...
    it_zzy阅读 9,333评论 3 53
  • 其实活着,真的很累。 2015年经历了夏天艰难的决定还是按时入学了,前路未知。 2016年开初,前进无门,真...
    超超超无敌女纸阅读 1,868评论 0 1

友情链接更多精彩内容