为faster-RCNN-TF制作PASCAL VOC2007格式的数据集

一、数据集准备

我们做目标检测的深度学习时,大家都知道要有训练(train)集,验证(valid)集和测试(test)集,数据集的格式也有很多种,我们这里使用的是pascal_voc数据格式。如下图是voc2007数据集文件夹格式
  1. Annotations文件夹
    该文件下存放的是xml格式的标签文件,每个xml文件都对应于JPEGImages文件夹的一张图片。
  2. JPEGImages文件夹
    该文件夹下存放的是数据集图片,包括训练和测试图片,一般都是jpg格式的照片,如果有必要的话可以将其他格式的照片转换成jpg或者用PNG格式,这个在后续会有提到
  3. ImageSets文件夹
    该文件夹下存放了三个文件夹,分别是Layout、Main、Segmentation。在这里我们只用存放图像数据的Main文件夹,其他两个暂且不管。
  4. SegmentationClass文件和SegmentationObject文件。
    这两个文件都是与图像分割相关,跟咱们这个没有太大关系,先不管。

1. Annotations文件夹

Annotations文件夹中存放的是xml格式的标签文件,每一个xml文件都对应于JPEGImages文件夹中的一张图片。xml文件的解析如下所示(这是我自己做的数据集的注释文件,想看原始的可以去下载PASCAL VOC2007原始数据集(http://host.robots.ox.ac.uk/pascal/VOC/voc2007/)):

<annotation>
        <folder>faster-RCNN-test1</folder>
        <filename>000001.jpg</filename>                                        #文件名
        <path>G:\UAV\faster-RCNN-test1\000001.jpg</path>                       #命名这个文件的文件夹名,不重要
        <source>                                                               #图像来源,不重要 
                <database>Unknown</database>
        </source>
        <size>                                                                 #图像尺寸,包括长、宽和通道数
                <width>4608</width>
                <height>3456</height>
                <depth>3</depth>
        </size>
        <segmented>0</segmented>                                               #是否用于分割,在目标识别中01无所谓
        <object>                                                               #检测到的物体
                <name>succulent_root</name>                                    #物体类别
                <pose>Unspecified</pose>                                       #拍摄角度
                <truncated>0</truncated>                                       #是否被截断,0表示完整
                <difficult>0</difficult>                                       #目标是否难以识别,0表示容易识别
                <bndbox>                                                       #bounding-box,包含左下角和右上角xy坐标
                        <xmin>2136</xmin>
                        <ymin>2031</ymin>
                        <xmax>2302</xmax>
                        <ymax>2207</ymax>
                </bndbox>
        </object>
        <object>                                                              #检测到几个物体,其他与第一个物体同样
                <name>pots</name>
                <pose>Unspecified</pose>
                <truncated>0</truncated>
                <difficult>0</difficult>
                <bndbox>
                        <xmin>1844</xmin>
                        <ymin>1748</ymin>
                        <xmax>2547</xmax>
                        <ymax>2400</ymax>
                </bndbox>
        </object>
        <object>
                <name>tag</name>
                <pose>Unspecified</pose>
                <truncated>0</truncated>
                <difficult>0</difficult>
                <bndbox>
                        <xmin>2719</xmin>
                        <ymin>1152</ymin>
                        <xmax>3743</xmax>
                        <ymax>1724</ymax>
                </bndbox>
        </object>
</annotation>

2. JPEGImages文件夹

  1. JPEGImages 内部存放了PASCAL VOC所提供的所有的图片,包括了训练图片、验证图片和测试图片
  2. 这些图像的像素尺寸大小不一,但是横向图的尺寸大约在500375左右,纵向图的尺寸大约在375500左右,基本不会偏差超过100。(在之后的训练中,第一步就是将这些图片都resize到300300或是500500,所有原始图片不能离这个标准过远。

3. ImageSets文件夹

ImageSets存放的是每一种类型的challenge对应的图像数据。

我们只需要准备三个文件夹即可,即刚才重点介绍的3个文件夹,Annotation,JPEGImages和ImageSets文件夹。

  1. 准备训练所需的图片,图片命名成VOC2007格式,这样可以免去许多麻烦,下面是一个批量重命名文件的代码:
import os

path = r'G:\\UAV\\faster-RCNN-test\\'
savedpath = r'G:\\UAV\\faster-RCNN-test1\\'

filelist = os.listdir(path)
for i in range(0 , len(filelist)):
    input_img = path + filelist[i]
    output_img = savedpath + '%06d' % (i + 1) + '.jpg'
    print(input_img)
    print(output_img)
    os.rename(input_img , output_img)
  1. 对图片进行注释,我这里使用的是Windows10 + Anaconda + LabelImg来做的,具体做法参见我的另一篇简书(https://www.jianshu.com/p/bda8ea406498
  2. 将数据集分隔成三部分分别用于faster-RCNN的训练,验证和测试,可以通过以下代码来实现:
import cv2
import os
import random
 
root = '/public/chenhx/Deep_learning_architecture/Faster-RCNN_TF/data/VOCdevkit/VOC2007/faster-RCNN-test1'
fp = open(root + '/'+'name_list.txt' , 'r')
fp_trainval = open(root + '/'+'trainval.txt', 'w')
fp_test = open(root + '/'+'test.txt', 'w')
fp_train = open(root + '/'+'train.txt', 'w')
fp_val = open(root + '/'+'val.txt', 'w')
 
filenames = fp.readlines()
for i in range(len(filenames)):
    pic_name = filenames[i]
    pic_name = pic_name.strip()
    x = random.uniform(0, 1)
    pic_info = pic_name.split('.')[0]
    #  this 0.5 represents 50% of the data as trainval data
    if x >= 0.5:
        fp_trainval.writelines(pic_info + '\n')
 
    else:
        fp_test.writelines(pic_info + '\n')
 
fp_trainval.close()
fp_test.close()
 
 
 
fp = open(root + '/' +'trainval.txt')
filenames = fp.readlines()
for i in range(len(filenames)):
    pic_name = filenames[i]
    pic_name = pic_name.strip()
    pic_info = pic_name.split('.')[0]
    x = random.uniform(0, 1)
    #  This 0.5 represents 50% of the trainval data as train data
    if x >= 0.5:
        fp_train.writelines(pic_info + '\n')
    else:
        fp_val.writelines(pic_info + '\n')
fp_train.close()

预训练模型、数据集的具体路径放在:

- Faster-RCNN_TF
    - data
        - VOCdevkit2007
            - VOC2007
                - JPEGImages
                - Annotations
                - ImageSets
        - pretrain_model
            - VGG_imagenet.npy

至此,准备完毕!!!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343