RNA-Seq分析|RPKM, FPKM, TPM, 计算对比

在高通量测序当中,很重要的一块就是检测基因的表达量,它是差异分析和转录组数据分析的基础。与q-PCR相似,基因表达量的衡量也是采取相对定量的方法。
落在一个基因区域内的read counts数目取决于基因长度和测序深度。

1.基因长度的影响

在同一个样本中,基因越长,随机打断得到的片段就越多,该基因被测到的概率就越大,比对到该基因的reads就越多。

2.测序深度的影响

不同样本里,样本的测序深度越高,同一基因被测到的次数越多,比对到该基因的reads数就越多。
由1和2可知一个基因越长,测序深度越高,落在其内部的read counts数目就会相对越多。因此我们想比较不同基因的表达量,就要进行数据标准化。


理解基因长度和测序深度

看上图,rep3和rep相比,无论哪一个基因,rep3的计数都高于rep1,说明rep3的测序深度高于rep1;而基因B与基因A相比,无论在哪一个rep里,基因B的计数都高于基因A,说明基因B的长度大于基因A。

RPKM

RPKM:Reads Per Kilobase Million
先将测序深度标准化,然后将基因长度标准化。
计算公式:RPKM= total exon reads/(mapped reads(millions) x exon length(KB))
total exon reads:某个样本mapping到特定基因外显子上所有的reads.
mapped reads(millions):某个样本所有的reads总和.
exon length(KB):某个基因的长度(外显子长度总和,以KB为单位).


RPKM标准化前vs标准化后

如上图所示,Rep1 RPKM=10/(35x2)=1.43

FPKM

FPKM:Fragments Per Kilobase Million
RPKM is for single end RNA-seq.
FPKM is very similar to RPKM, but for paired end RNA-seq.
看下图理解reads和fragment的区别,以及为何RPKM for SE and FPKM for PE.


RPKM VS FPKM

RPKM vs FPKM

对于PE,如果一对paired-read都比对上了,那么这一对pair-read称为一个fragment;如果一个比对上了,另一个没比对上,那么这个比对上的read就称为一个fragment。

TPM

TPM: Transcripts Per Kilobase of exon model per Million mapped reads (每千个碱基的转录每百万映射读取的Transcripts)
TPM和RPKM以及FPKM最主要的区别:different order.
TPM先将基因长度标准化,然后将测序深度标准化

TPM顺序:
step1

step2

可以看出TPM是先对基因长度标准化,再对测序深度标准化,这与FPKM正好相反。


TPM vs RPKM
TPM vs RPKM

TPM vs RPKM

TPM vs RPKM

个人理解:由于标准化顺序的不同,导致TPM的pie是一样的,而RPKM的pie是不一样的。
statquest:with TPM, everyone gets the same sized pie. since RNA-seq is all about comparing relative proportions of reads, this metric seems more appropriate.

参考:https://www.jianshu.com/p/879db8f94a34

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容