无标题文章

  1. 机器学习中分类和预测算法的评估:

准确率
速度
强壮行
可规模性
可解释性

  1. 什么是决策树/判定树(decision tree)?

    判定树是一个类似于流程图的树结构:其中,每个内部结点表示在一个属性上的测试,每个分支代表一个属性输出,而每个树叶结点代表类或类分布。树的最顶层是根结点。

  1. 机器学习中分类方法中的一个重要算法

  2. 构造决策树的基本算法 分支 根结点
    结点

树叶

 3.1 熵(entropy)概念:

      信息和抽象,如何度量?
      1948年,香农提出了 ”信息熵(entropy)“的概念
      一条信息的信息量大小和它的不确定性有直接的关系,要搞清楚一件非常非常不确定的事情,或者          
      是我们一无所知的事情,需要了解大量信息==>信息量的度量就等于不确定性的多少
      
      例子:猜世界杯冠军,假如一无所知,猜多少次?
      每个队夺冠的几率不是相等的
      
      比特(bit)来衡量信息的多少

      

      

      变量的不确定性越大,熵也就越大
      

 3.1 决策树归纳算法 (ID3)

      1970-1980, J.Ross. Quinlan, ID3算法
 
      选择属性判断结点

      信息获取量(Information Gain):Gain(A) = Info(D) - Infor_A(D)
      通过A来作为节点分类获取了多少信息

            

      

      

      

      

       类似,Gain(income) = 0.029, Gain(student) = 0.151, Gain(credit_rating)=0.048

      所以,选择age作为第一个根节点

      重复。。。

      算法:

树以代表训练样本的单个结点开始(步骤1)。
如果样本都在同一个类,则该结点成为树叶,并用该类标号(步骤2 和3)。
否则,算法使用称为信息增益的基于熵的度量作为启发信息,选择能够最好地将样本分类的属性(步骤6)。该属性成为该结点的“测试”或“判定”属性(步骤7)。在算法的该版本中,
所有的属性都是分类的,即离散值。连续属性必须离散化。
对测试属性的每个已知的值,创建一个分枝,并据此划分样本(步骤8-10)。
算法使用同样的过程,递归地形成每个划分上的样本判定树。一旦一个属性出现在一个结点上,就不必该结点的任何后代上考虑它(步骤13)。
递归划分步骤仅当下列条件之一成立停止:
(a) 给定结点的所有样本属于同一类(步骤2 和3)。
(b) 没有剩余属性可以用来进一步划分样本(步骤4)。在此情况下,使用多数表决(步骤5)。
这涉及将给定的结点转换成树叶,并用样本中的多数所在的类标记它。替换地,可以存放结
点样本的类分布。
(c) 分枝
test_attribute = a i 没有样本(步骤11)。在这种情况下,以 samples 中的多数类
创建一个树叶(步骤12)

 3.1 其他算法:
           C4.5:  Quinlan
           Classification and Regression Trees (CART): (L. Breiman, J. Friedman, R. Olshen, C. Stone)
           共同点:都是贪心算法,自上而下(Top-down approach)
           区别:属性选择度量方法不同: C4.5 (gain ratio), CART(gini index), ID3 (Information Gain)

 3.2 如何处理连续性变量的属性? 
  1. 树剪枝叶 (避免overfitting)
    4.1 先剪枝
    4.2 后剪枝

  2. 决策树的优点:
    直观,便于理解,小规模数据集有效

  3. 决策树的缺点:
    处理连续变量不好
    类别较多时,错误增加的比较快
    可规模性一般(

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容

  • “什么是判定树?”判定树是一个类似于流程图的树结构;其中,每个内部结点表示在一个属性上的测试,每个分枝代表一个...
    1想得美阅读 4,233评论 1 0
  • 决策树理论在决策树理论中,有这样一句话,“用较少的东西,照样可以做很好的事情。越是小的决策树,越优于大的决策树”。...
    制杖灶灶阅读 5,832评论 0 25
  • 积跬步以致千里,积怠惰以致深渊 注:本篇文章在整理时主要参考了 周志华 的《机器学习》。 主要内容 决策树是机器学...
    指尖上的魔术师阅读 1,370评论 0 5
  • 第5章 引用类型(返回首页) 本章内容 使用对象 创建并操作数组 理解基本的JavaScript类型 使用基本类型...
    大学一百阅读 3,211评论 0 4
  • 提到胎中胎,会好多人比陌生,顾名思义就是1个胎儿包住了另1个胎儿。这是1种比罕见的先天性疾病,我们来了解1下它是怎...
    二宝皓妈妈阅读 579评论 0 0