Jan 9: Copula and Sklar Theorem

当构建多个随机变量的联合分布时,可以分两步,第一先有每个变量的边际分布。第二描述这些变量如何related to each other,这个描述就是Copula。精确定义如下

A copula is the joint distribution of random variables U1, U2, . . . ,Up, each of which is marginally uniformly distributed as U(0, 1).

所以Copula其实是个多元函数。Sklar定理保证这种描述方式make sense。因为此多元函数存在并且在连续情况下唯一。

两种常见Copula:Gaussian Copula和t-Copula。

When R = I, the multivariate normal distribution is that of independent standard normal variables, and the copula has a constant density. But the t-copula still shows dependence.

Tail Dependence, which is important in risk management, is coming tomorrow.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容