想学数据分析?先来看看基础入门吧

谁说菜鸟不会数据分析的读书笔记,读完这本书的第一感觉是,excel已经够喝一壶了,不要急着想学SPSS、SAS,还是先从基础的看起吧。

1、数据分析的步骤

(1)明确数据分析的目的和思路
  做数据分析切忌为了分析而分析,要有明确的分析目的,一般会借助于一些理论模型来知道分析,比如:
  营销方面的理论模型:4P、用户使用行为、STP理论、SWOT等,管理方面的理论模型:PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART原则。
  书中列举的这些理论模型很多都听说过,只是平时处理问题很少用到,或者说没有人带着去切实的拿这些理论解决过实际问题,所以也就在平时很少想起了。不过在看这些方法的原理时,还是觉得蛮牛的。
(2)数据收集
  数据收集常见的就是网络、数据库、调研等。
(3)数据处理
数据处理有数据清洗以去除垃圾数据,并且进行相应的转化计算。
(4)数据分析
(5)数据展现
后面花了很大的篇幅讲数据展现,还是比较全面的,见识了各种数据图表是如何做出来的。
(6)撰写报告

2、几个常用的概念

其中讲了平均数、绝对数、百分数等几个以前小学学的概念,捡个现在用的比较多的说下:
倍数与番数
倍数是一个数除以另一个数的商。
番数是指原来数量的2的N次方。N是几,就是现在的数据较原来的数据翻了几番。
同比与环比
以月为栗子来说明
2016年8月的数据较2015年8月的数据为同比。
2016年8月的数据较2016年7月的数据为环比。

3、数据分析的方法论

书中有一个有意思的表格说明了方法论在数据分析中的位置:

类比 数据分析 服装设计
方法论 5W2H、4P等分析思路 服装设计图
工具 excel、spss、sas等 剪刀、缝纫机等
技术 线性回归分析、聚类分析等 压烫、立体裁剪、骑缝等

作者用数据分析与服装师设计做类比,来说明方法论就像服装的设计图纸一样从整体上指导数据分析按照一定的规则体系完成,而不是抓到一块分析一块。

下面讲讲都有哪些方法论:

PEST分析法
这个方法的名字其实就是四个分析因素的首字母缩写,分别是政治(political)、经济(economic)、技术(technological)和社会(social)。

一般用于从宏观层面分析企业或行业所处的环境。

5W2H分析法
也是英文首字母,何时(When)、何地(Where)、何人(Who)、何因(Why)、何事(What)、如何(How)、何价(How much)。

这个分析方法用途还是蛮大的,可以用于很多场景的分析,比如用户画像、用户的购买行为等等。

逻辑树分析法
这个分析方法,如果你会用思维导图工具的话,一看就明白,其实就是将一个大问题一层层拆分成一个小问题,以便更好地分析问题,查找解决办法。

4P营销理论
这个理论还真的是用于营销的,4P分别是产品(Product)、价格(Price)、促销(Promotion)、渠道(Place)。主要用于产品的营销分析。

4、excel数据处理的常用公式函数介绍

重复数据处理——强大的“条件格式”
强烈建议看到本文的小伙伴随便找一组数据在excel的“表格-条件格式”中的各种条件格式试一遍,你会发现,真的很好玩,原来一些看起来很炫酷的功能其实excel是可以轻松实现的。
缺失数据处理——ctrl+enter
挺实用的功能,用于多个不连续的空白单元格一次性填充相同内容。具体操作步骤如下:
1、按住ctrl不放,用鼠标左键一个个选中所有空白单元格。
2、选好后,放开ctrl,输入要填充的内容,这时,填充的内容会显示在最后一个选中的单元格中。
3、关键一步,按住ctrl不放,再按enter,这时,所有之前选中的单元格都会被填充上相同的内容。
几个常用函数
函数比较难在博客中讲清楚,几个重要的函数,同学们可以自行百度一下具体用法:
取左部字符——left();
取右部字符——right();
字符合并——concatenate();
在表格的首列查找指定数据,并返回表格中需要的其他数据,用于两个表格匹配合并——vlookup();
跟上一个类似,是在表格的首行查找指定数据——hlookup();
年、月、日提取——date();
计算时间间隔长度,常用于工龄计算——dateif();
数据随机抽样——rand();

5、两个重要的点(1/2)——如何设置多个指标的权重

这也是比这之前一直很苦恼的一个问题,书中讲的方法不错,这里沿用书中的人才评价的例子说明:

|人才评价|人品|动手能力|创新意识|教育背景|合计|排序|
|:---:|:---:|:---:|:---:|:---:|:---:|
|人品||0|1|1|2|2|
|动手能力|1||1|1|3|1|
|创新意识|0|0||1|1|3|
|教育背景|0|0|0||0|4|
如上表,将所有指标建立一个矩阵,一一进行对比重要性,行比列重要,交叉单元格写1,反之写0,比如人品对比动手能力,人品没有动手能力重要,则写0。注意,各指标不与自己做对比。

完成表格后,每一个指标都会有一个自己的得分,得分越高,权重越大:

某指标权重=(某指标重要性合计得分/所有指标的重要性合计得分)*100%

6、两个重要的点(2/2)——数据透视表

单独列出来,是因为这个excel的这个功能真的很好用,不过在博客也很难讲清楚,还请同学们自行百度一下,“数据透视表”,好用的不能再好用的功能。

7、炫酷的图表

书中这部分展示了各种炫酷的图表样式,适合浏览一下,以后用的上可以查阅,这里也做简单罗列:
柱状图、雷达图、条件格式(这个不是图形,是在第4点提到的功能,很强大,可以实现一些炫酷的效果,比如数据条、图标集、迷你图)、平均线图、双坐标图、竖形折线图、矩阵图、气泡图。

总结

总体来看,这本书对我这种只会用excel最最基础功能的小白来说,还是蛮多惊喜的,至少有了一个全局观。
本文只是罗列了一些书中自认为重要的内容,还有些不错的内容,同学们可以购买这本书看一下。
个人读书笔记,欢迎留言探讨。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容