Kafka Streams: KStream和KTable

KStream和KTable是Kafka Streams里内建的两个最重要的抽象,分别对应数据流和数据库。Kafka Streams作为流处理技术的一大卖点,即是很好地将存储状态的表(table)和作为记录的流(stream)无缝地结合在了一起。

KStream

数据流(data stream),即是一段顺序的,可以无限长,不断更新的数据集。
数据流中比较常记录的是事件(stream of events),这些事件可以是一次鼠标点击(click),一次交易,或是传感器记录的位置数据。

KStream负责抽象的,就是数据流。与Kafka自身topic中的数据一样,类似日志,每一次操作都是向其中插入(insert)新数据。

KStream的构建方法:

builder.stream()

KTable

传统数据库,包含了各种存储了大量状态(state)的表格。

KTable负责抽象的,就是表状数据。每一次操作,都是更新插入(upsert)

KTable的构建方法:

builder.table()

KStream和KTable之间的关系

事务日志记录了所有对数据库的更改。数据库保存了日志中最新的记录。数据库就是日志子集的一个缓存,记录了最新数据的子集。

KStream可以看作是KTable的更新日志(changlog),数据流中的每一个记录对应数据库中的每一次更新。

KTable 则可以看作KStream在某一时间点,每一个key对应的最新value的快照(snapshot)。


KStream和KTable之间的相互转换

将KTable转换成KStream

toStream() 方法

KStream<byte[], String> stream = table.toStream();

将KStream转换成KTable

方法1: groupByKey() + aggregation操作

KTable<String, Long> table = stream.groupByKey()
                                   .count();

方法2: 将KStream写回Kafka,再按KTable的格式读出

stream.to("topic0");

KTable<String, String> table = builder.table("topic0");

KStream和KTable不同的使用场景

将topic中数据经过aggregation操作后 ,用KTable来存储结果。

  • KStream - 每个新数据都包含了部分信息。
  • KTable - 每次更新都合并到原记录上。

KTable与日志压缩(log compaction)

日志压缩可以作为性能提升的一种方式。
删除旧的key value 因为不需要了,只保留每个key的最后一次更新。
带来的优势是:可以快速得到最终状态 而不是每次更新 --- 崩溃后也只需恢复少量数据。

只应对KTable使用,不该对KStream使用。KStream中的每条数据都包含了一部分信息,删除会将这部分信息丢失。

需要手动在创建时对某个topic开启日志压缩: --config cleanup.policy=compact

删除不是立刻进行的,需要等待一个delete.retention.ms周期(默认为24小时)。

是一个单独的后台压缩线程,需要一定的内存开销。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容