讲解:CS 545、RRTs、Python、PythonDatabase|Python

CS 545: Introduction to Robotics Fall 2019HW 4: Path Planning with RRTsIn this assignment we’ll explore a fundamental problem in robotics: path planning. Thatis, the problem of moving a robot from an initial configuration A to a goal configurationB, while avoiding obstacles along the way.You can think of this as a literal path planning problem where a mobile base mustnavigate to a goal, or in a more abstract application, such as finding a sequence of jointangles that will move an arm from one position to another.This problem has two primary issues that make it difficult to apply shortest-path algorithmsfrom graph theory, like Djikstra’s or A-star:1. The search space is continuous: we dont have a predefined set of discrete nodes tosearch through. Any kind of discretized planning will require us to create our ownnodes.2. There may not be an accurate measure of distance. For example, how do we determinethe distance between two configurations for a robot arm? Do we look at theend effector pose? The joint angles? There is no clear answer.1 RRTOne method to solve this problem is an algorithm called Rapidly-exploring RandomTrees (RRT). The algorithm itself is quite simple, and only has 1 hyperparameter to tune!Consider a 2D search problem where we must find a path from a starting point Nstartto a goal point Ngoal, while avoiding the obstacles. To do so, we must build a path (asequence of points) connecting Nstart to Ngoal. We’ll be assuming a euclidean distancefunction for our implementation.1CS 545: Introduction to Robotics Fall 2019Figure 1: A 2D RRT search space with no obstacles (left) and a single obstacle (right).Nstart is in green, while Ngoal is in red.An RRT is an iteratively built tree with clever use of random sampling that is likely(though not guaranteed) to build one such path from Nstart to Ngoal.We first randomly sample a point in the search space. Let’s call it Psample.We then compute the direction vector between the closest node Nclose in our search treeand Psample.2CS 545: Introduction to Robotics Fall 2019Now we create a new node that is a fixed distance δ away from Nclose along our directionvector, which we’ll call Nnew.If Nnew is not in collision with an obstacle, we add it to our search tree.Figure 2: A valid Nnew will not collide with any obstacles (left). A Nnew that does collide(right) should be discarded.3CS 545: Introduction to Robotics Fall 2019After every new addition, we check if that point is within δ of the goal position. If so,we connect to the goal and draw our path.Figure 3: Once Nnew is clCS 545代做、RRTs代做、代写Python程序语言、代ose enough to Ngoal, connect the two nodes and trace the pathfrom Nstart to Ngoal.Note that the path we build is quite convoluted. RRT will only build a valid path, notnecessarily the shortest path! The algorithm provides no proof of optimality, but it isrelatively fast to compute compared to other path planning algorithms.The example above is restricted to a 2-dimensional search problem, but the code you willwrite will be able to work across N-dimensional search spaces.2 RRTImplement the empty methods in the RRT, CollisionBox, and CollisionSphere classesin src/rrt.py and src/collision.py. The skeleton code lays out the basic structure,alongside a Node implementation you may find helpful as a data structure. You are freeto modify the RRT class as needed, but you MUST implement the methods provided.3 TestingUnit tests are provided to help you check and bugfix your implementation. Look throughthe tests in test/test rrt.py to understand what each unit test is looking for.4CS 545: Introduction to Robotics Fall 2019You can run unit tests for your RRT with the following commands:cd code/rrt# Run all tests for RRTnose2 test.test_rrt# Run a single test classnose2 test.test_rrt.TestRRTInit# Run a single test casenose2 test.test_rrt.TestRRTInit.test_rrt_init_basicThe TestRRTBuild test case will run an end-to-end test of your RRT. Make sure you’vepassed this final test case before moving on.4 VisualizationTo get a visual understanding of what your RRT is doing, we have implemented a specialcase of the RRT for 2-dimensional search problems with a visualization method.Finish the implementation in src/planar rrt.py and examine the unit test intest/test planar rrt.py. You can change the input values to experiment with yourPlanarRRT, but first try out the default configuration. You should see a visualizationsimilar to the ones illustrated in this document!# Run the PlanarRRTnose2 test.test_planar_rrt5 QuestionsIn the pdf file answers.pdf answer each of the following questions in a couple sentences.1. Why is the path returned by the RRT not guaranteed to be optimal (i.e. not theshortest feasible path)?2. What effect will increasing δ have on the performance of the RRT?5CS 545: Introduction to Robotics Fall 20193. What effect will increasing the bounds of the search space have on the performanceof the RRT? How about increasing the number of dimensions of the search space?4. Why is it important to have a relatively small δ? Hint: think about what wouldhappen if we have lots of small obstacles in our search space6转自:http://www.3daixie.com/contents/11/3444.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容