参考文档:http://www.importnew.com/19472.html
公平锁和非公平锁
公平锁是指多个线程在等待同一个锁时,必须按照申请锁的先后顺序来一次获得锁。
公平锁的好处是等待锁的线程不会饿死,但是整体效率相对低一些;非公平锁的好处是整体效率相对高一些,但是有些线程可能会饿死或者说很早就在等待锁,但要等很久才会获得锁。
自旋锁和阻塞锁
自旋锁:是指当线程获取锁失败的时候,去执行一个无意义的循环,循环结束后再重新去竞争锁,如果竞争不到则继续循环。整个过程中线程一直处于运行(running)状态。
阻塞锁:和自旋锁相对,指当线程获取锁失败时,线程进入阻塞(blocking)状态,当获取相应的信号时(唤醒,时间),进入线程的准备就绪状态,准备就绪状态的所有线程,通过竞争,进入运行状态。
自旋锁的出现原因:线程的阻塞和唤醒需要CPU从用户态转为核心态,频繁的阻塞和唤醒对CPU来说是一件负担很重的工作。而且,很多对象锁的锁定状态只会持续很短的一段时间,例如整数的自加操作,在很短的时间内阻塞并唤醒线程显然不值得,为此引入了自旋锁。
适用情况:自旋等待不能代替阻塞。自旋等待本身虽然,但它是要占用处理器时间的,因此,如果锁被占用的时间很短,自旋当代的效果就会非常好,反之,如果锁被占用的时间很长,那么自旋的线程只会白白浪费处理器资源。
可重入锁和不可重入锁
可重入锁:指的是同一线程外层函数获得锁之后 ,内层递归函数仍然有获取该锁的代码,但不受影响。即获取锁的粒度是线程而不是调用。
不可重入锁:和可重入锁相反,指的是同一线程外层函数获得锁之后,不能再次获取该锁。
可重入锁最大的作用是避免死锁。
在JAVA环境下 ReentrantLock 和synchronized 都是可重入锁。
类锁和对象锁
在Java程序运行时环境中,JVM需要对两类线程共享的数据进行协调:
1)保存在堆中的实例变量
2)保存在方法区中的类变量
为了实现监视器的排他性监视能力,java虚拟机为每一个对象和类都关联一个锁。代表任何时候只允许一个线程拥有的特权。线程访问实例变量或者类变量不需锁。
类锁实际上用对象锁来实现。当虚拟机装载一个class文件的时候,它就会创建一个java.lang.Class类的实例。当锁住一个对象的时候,实际上锁住的是那个类的Class对象。
事实上,synchronized修饰非静态方法、同步代码块的synchronized (this)用法和synchronized (非this对象)的用法锁的是对象,线程想要执行对应同步代码,需要获得对象锁。
synchronized修饰静态方法以及同步代码块的synchronized (类.class)用法锁的是类,线程想要执行对应同步代码,需要获得类锁。
悲观锁和乐观锁
悲观锁:假定会发生并发冲突,屏蔽一切可能违反数据完整性的操作。
乐观锁:假定不会发生并发冲突,只在提交操作时检测是否违反数据完整性。(使用版本号或者时间戳来配合实现)
共享锁和排它锁
共享锁:如果事务T对数据A加上共享锁后,则其他事务只能对A再加共享锁,不能加排它锁。获准共享锁的事务只能读数据,不能修改数据。
排它锁:如果事务T对数据A加上排它锁后,则其他事务不能再对A加任何类型的锁。获得排它锁的事务即能读数据又能修改数据。
读写锁
读写锁是一个资源能够被多个读线程访问,或者被一个写线程访问但不能同时存在读线程。Java当中的读写锁通过ReentrantReadWriteLock实现。
互斥锁
所谓互斥锁就是指一次最多只能有一个线程持有的锁。在JDK中synchronized和JUC的Lock就是互斥锁。
偏向锁、轻量级锁和重量级锁
synchronized的锁可以分为偏向锁、轻量级锁以及重量级锁,通过Java对象头实现。
偏向锁是JDK6中引入的一项锁优化,它的目的是消除数据在无竞争情况下的同步原语,进一步提高程序的运行性能。
偏向锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁没有被其他的线程获取,则持有偏向锁的线程将永远不需要同步。大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得,为了让线程获得锁的代价更低而引入了偏向锁。当有另外一个线程去尝试获取这个锁时,偏向模式就宣告结束。
轻量级锁:线程在执行同步块之前,JVM会先在当前线程的栈桢中创建用于存储锁记录的空间,并将对象头中的Mark Word复制到锁记录中,官方称为Displaced Mark Word。然后线程尝试使用CAS将对象头中的Mark Word替换为指向锁记录的指针。如果成功,当前线程获得锁,如果失败,则自旋获取锁,当自旋获取锁仍然失败时,表示存在其他线程竞争锁(两条或两条以上的线程竞争同一个锁),则轻量级锁会膨胀成重量级锁。
重量级锁:在JVM中又叫对象监视器(Monitor),它很像C中的Mutex,除了具备Mutex(0|1)互斥的功能,它还负责实现了Semaphore(信号量)的功能,也就是说它至少包含一个竞争锁的队列,和一个信号阻塞队列(wait队列),前者负责做互斥,后一个用于做线程同步。
整个synchronized锁流程如下:
- 检测Mark Word里面是不是当前线程的ID,如果是,表示当前线程处于偏向锁
- 如果不是,则使用CAS将当前线程的ID替换Mard Word,如果成功则表示当前线程获得偏向锁,置偏向标志位1
- 如果失败,则说明发生竞争,撤销偏向锁,进而升级为轻量级锁。
- 当前线程使用CAS将对象头的Mark Word替换为锁记录指针,如果成功,当前线程获得锁
- 如果失败,表示其他线程竞争锁,当前线程便尝试使用自旋来获取锁。
- 如果自旋成功则依然处于轻量级状态。
- 如果自旋失败,则升级为重量级锁。
锁 | 优点 | 缺点 | 适用场景 |
---|---|---|---|
偏向锁 | 加锁和解锁不需要额外的消耗,和执行非同步方法比仅存在纳秒级的差距 | 如果线程间存在锁竞争,会带来额外的锁撤销的消耗 | 适用于只有一个线程访问同步块场景 |
轻量级锁 | 竞争的线程不会阻塞,提高了程序的响应速度 | 如果始终得不到锁竞争的线程使用自旋会消耗CPU | 追求响应时间,锁占用时间很短 |
重量级锁 | 线程竞争不使用自旋,不会消耗CPU | 线程阻塞,响应时间缓慢 | 追求吞吐量,锁占用时间较长 |
系统优化措施
锁消除
锁消除是虚拟机JIT在运行时,对一些代码上要求同步,但是被检测到不可能存在共享数据竞争的锁进行消除。锁消除的主要判断依据是来源于逃逸分析的数据支持,如果判断在一段代码中,堆上的所有数据都不会逃逸出去从而能被其他线程访问到,那就可以把他们当做栈上数据对待,认为他们是线程私有的,同步加锁自然就无需进行。
锁粗化
原则上,我们在编写代码的时候,总是推荐将同步块的作用范围限制的尽量小——只在共享数据的实际作用域中才进行同步,这样是为了使得需要同步的操作数量尽可能变小,如果存在锁禁止,那等待的线程也能尽快拿到锁。大部分情况下,这些都是正确的。但是,如果一些列的联系操作都是同一个对象反复加上和解锁,甚至加锁操作是出现在循环体中的,那么即使没有线程竞争,频繁地进行互斥同步操作也导致不必要的性能损耗。虚拟机探测到有这样的情况的话,会把加锁同步的范围扩展到整个操作序列的外部,这样的一个锁范围扩展的操作就称之为锁粗化。