论文阅读“MORI-RAN: Multi-view Robust Representation Learning via Hybrid Contrastive Fusion”

Ke, Guanzhou et al. “MORI-RAN: Multi-view Robust Representation Learning via Hybrid Contrastive Fusion.” 2022 IEEE International Conference on Data Mining Workshops (ICDMW) (2022): 467-474.

摘要导读

对于多视图聚类和分类任务而言,其表示学习是非常关键的。然而,这里始终有两个较为困扰的问题:i) 如何从大量的无标签样本中学到鲁棒的多视图表示,ii) 如何做好视图一致性和特有性的平衡。为此,本文提出了一个混合对比融合方法用于从无标签样本中抽取鲁棒的视图共享表示。具体来说,作者发现引入一个额外的表示空间并且在这个空间中对齐表示使得模型可以学习到视图共享表示。同时,为保证模型的坍塌,还设计了一个非对称的对比策略避免获得平凡解。通过对比实验证明了模型的有效性。

Intro梳理

在Intro中主要是现有融合方法进行了分类梳理,将其分为如下两类:

并指出(a)中使用的融合方式输出的用于下游任务表示的维度总是和视图的数量成线性增长;而在(b)中的方式则可以输出任意维度的表示,容易满足不同下游任务的需要。

模型浅析

数据定义及目标:

A. 模型结构

  • 对应于每一个视图的view-specific encoder networks,用于学习每个视图的表示h^v=e_v(x^v)。这里可以选取不同的网络结构,文中用了FCNs。
  • 视图融合块fusion-block,用于将拼接的视图表示通过非线性映射到视图共享表示z=f(\overline{h}),并且使用跳跃连接实现输入和输出的连接。
  • 混合对比模块 hybrid contrastive module,该模块以z\overline{h}作为输入,利用实例间对比最大化z\overline{h}的互信息,同时使用类簇间对比减少视图冗余表示。

B. 混合对比模块的设计及其损失

  • 在该模块中包含了实例级对比(引入非对称对比策略)和类簇级对比两个方法。
  • 对应于两个对比存在两个不同的损失,总体损失如下:

    a. 实例级对比损失:作者将redundancy-reduction principle扩展到多视图领域中。首先定义了多视图互相关矩阵:
    \mathcal{C}是一个与网络输出的维数大小相同的方阵,其值的范围为[−1,1]。根据非对称对比策略,在计算中固定了视图公共表示z,然后计算z与每个视图特定表示h^v之间的互相关。最后,实例级的对比损失可以写成如下的形式:

    b. 类簇级对比损失:要求视图公共表示z和视图特定表示h^v在软标签分配方面是一致的:
    其中k是预先给定的类簇的个数,P(\cdot, \cdot)定义为如下:
    g(\cdot)是软标签分配网络(MLP),输出k维向量。
    Q_{(k)}(z)则是z的最佳软分配,由如下方式计算:
    \textbf{T}是一个转换矩阵,\textbf{1}是单位矩阵。通过四舍五入的过程可以得到一个离散的最优解\textbf{T}^*。构造最终的类簇级别的对比损失。

算法的整体流程如下:

显然这是作者基于自己前序工作做的一次改进,上次的论文详情这里给出https://www.jianshu.com/p/5a3dc36d5639。相比于之前直接最大化zh^v的互信息

在这个版本中加入了类簇对比损失,并且对对比的损失进行了升级。有兴趣的可以做一个简单的对比。总体来说,还是使用对比的方式进行视图融合以得到鲁棒的视图共享表示z,只是驱动的目标不一样了,且在本文的学习中强调了表示学习的重要性,而不局限于特定的下游任务。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,137评论 6 511
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,824评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,465评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,131评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,140评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,895评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,535评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,435评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,952评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,081评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,210评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,896评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,552评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,089评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,198评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,531评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,209评论 2 357

推荐阅读更多精彩内容