OpenSPG 新版发布:新增大模型知识抽取,3 步快速搭建专属知识图谱

随着 ChatGPT 的横空出世,大模型已然成为人工智能领域的焦点。大模型在语言理解、对话生成方面表现得尤其亮眼,而知识图谱则擅长大模型所无法解决的事实性“幻觉”和复杂推理问题。将知识图谱和大语言模型结合起来,充分发挥各自的优势,能为用户提供更优质的人工智能服务和产品。

去年 10 月 26 日,OpenSPG 正式开源,希望和社区一起共同推动知识图谱技术的发展和大模型+知识图谱双驱技术的落地应用。今年 1 月 10 日,OpenSPG 发布了 0.0.2 版本,旨在帮助用户进一步降低知识图谱的使用门槛,并通过神经网络框架 NN4K,为 OpenSPG 接入简单易用、模式统一的大模型服务。

GitHub:https://github.com/OpenSPG/openspg

下面将为大家一一介绍这些最新功能:

亮点一览

镜像版支持一键安装部署,只需 2 行命令即可完成 OpenSPG 服务端和客户端部署;

发布知识建模最佳实践指导原则,只需记住 7 个原则就可以搞定 SPG 图谱建模,无需理解复杂的图谱术语;

基于 KNext 可编程框架,用户只需 3 个步骤即可完成知识构建,Schema 面向对象建模、开发知识构建算子以及编排 BuilderChain,快速完成单图谱构建;

基于 NN4K 支持大模型知识抽取,提供完整的 LLM SFT、SPG Based AutoPrompt 和 LLM Invoker 完整链路,并内置 GPT 链路;

开源逻辑规则推理 Reasoner,可体验完备的逻辑规则与基础事实融合的全新知识推理引擎。

更新 1:2 条命令搞定安装部署

OpenSPG 0.0.2 开始支持镜像版一键安装部署,用户只需要运行 2 条 Docker 命令就可以完成部署。

OpenSPG 将整个应用分为客户端和服务端,客户端包含 KNext 框架,Builder 和 Reasoner 引擎,服务端包含 Schema 服务,TuGraph 图存储引擎,ElasticSearch 搜索引擎。客户端和服务端分别提供 Docker 镜像的快速部署。

👉 了解详情:https://spg.openkg.cn/tutorial/installation/installation

更新 2:7 个原则搞定 Schema 建模

为了帮助大家更好地理解和应用 SPG 构建知识图谱,我们从 SPG 建模的最佳实践中总结出 7 个原则,发布在 OpenSPG 0.0.2 的用户文档中,并且每个原则都搭配了相关示例进行说明。用户只需要了解这 7 个原则,就能够搞定知识图谱的 Schema 建模。

👉 了解详情:

https://spg.openkg.cn/introduction/schema

https://spg.openkg.cn/tutorial/schema/best_practice

更新 3:升级 KNext 可编程框架,3 个步骤实现知识构建

KNext 框架定义了 Chain,Component,Operator 等抽象模型,用户可以基于这些模型快速构建和使用图谱。

Component 定义图谱组件化能力,比如知识抽取,知识映射,知识推理等。Chain 将这些组件化能力串连完成图谱构建或者推理等流程。Operator 定义了 4 类算子,包含知识抽取、实体链指、关系预测、知识融合,用户可以自定义这些算子完成知识图谱构建过程中的复杂处理。每个任务只需要关注单类型要素及一跳出边的构建,系统会自动完成复杂子图的组装和构造,将图谱构建成本降到更低。

👉 了解详情:https://spg.openkg.cn/introduction/knext

更新 4:基于 NN4K 的大模型知识抽取

ChatGPT 在多种任务中表现出的智能令人印象深刻,使用 ChatGPT 和其他大语言模型增强知识图谱,可使知识图谱的构建过程更加准确和自动化,为此我们抽象了适合知识图谱的神经网络框架 NN4K。

NN4K 是一个神经网络模型的开发、管理、服务框架,为 OpenSPG 提供简单易用、模式统一的大模型服务。此次发布我们实现了在知识图谱构建过程中,调用大语言模型技术帮助构建图谱。与 OpenAI API 兼容的大语言模型服务,可通过修改配置方便接入;与 OpenAI API 不兼容的大语言模型服务,用户可通过开发自定义 NNInvoker 的方式接入。

👉 了解详情:https://spg.openkg.cn/tutorial/knext/nn4k

更新 5:开源规则推理 Reasoner

规则推理是知识图谱非常重要的一部分,将图谱的事实知识抽象并关联到具有实际的商业价值的逻辑知识。在 OpenSPG 0.0.2 中开源了完整的 Reasoner 能力,包括语法解析,执行计划,推理执行引擎。同时执行引擎侧定义 RDG 引擎扩展层,允许用户将推理能力迁移到自有图计算引擎。

👉 了解详情:https://spg.openkg.cn/introduction/reasoner

作为 2024 年的第一个版本,OpenSPG 在提高易用性,以及和大模型技术结合上迈出了第一步。2024 年我们将持续持续深化 SPG 与 LLM 双向驱动的技术范式,开源新一代知识引擎完整技术栈。在这个过程中,持续提升 SPG 的语义表达能力,提升易用性降低使用门槛,发布更多开箱即用的工具包、案例最佳实践、教学案例视频等。也期待社区同仁一起加入共建新一代 AI 引擎框架。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容