Task6:模型融合(2天)

数据挖掘-预测贷款用户是否逾期

1 划分数据集

导入宏包

In [1]:

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from scipy.stats import randint as sp_randint

from sklearn.model_selection import GridSearchCV

from sklearn.model_selection import RandomizedSearchCV

import warnings

warnings.filterwarnings('ignore')

import matplotlib as mpl

mpl.rcParams['font.sans-serif']=[u'SimHei']

mpl.rcParams['axes.unicode_minus']=False

pd.set_option('display.max_rows', 100)

pd.set_option('display.max_column', 100)

pd.set_option('display.max_colwidth', 50)

pd.set_option('display.float_format',lambda x : '%.5f' % x)

导入数据

In [2]:

data = pd.read_csv('./data/data_clean.csv', encoding='gbk')

Y = data['status']

X = data.drop(['status'], axis=1)

归一化

In [3]:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

X = scaler.fit_transform(X)

划分数据集

In [4]:

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.3, random_state=2018)

SMOTE 上采样

In [5]:

from imblearn.over_sampling import SMOTE

x_train_smote, y_train_smote = SMOTE(random_state=2018).fit_sample(x_train, y_train)

Using TensorFlow backend.

2 模型融合

 模型融合采用 Stacking 方法

 依据 Task5 提取 XGBClassifier、LGBMClassifier、RFClassifier 作为基模型

 采用 LogisticRegressionCV 作为次模型

2.1 模型调参

 现对所有基模型进行调超参优化

XGBClassifier

In [7]:

from xgboost import XGBClassifier

parameters = {'max_depth': [3, 4, 5, 6, 7, 8],

              'subsample': [0.5, 0.6, 0.7, 0.8, 0.9, 1.0],

              'colsample_bytree': [0.5, 0.6, 0.7, 0.8, 0.9, 1.0],

              'learning_rate': [0.01, 0.1, 0.2],

              'min_child_weight': [1, 2, 3],

              }

n_iter_search = 20

RS = RandomizedSearchCV(XGBClassifier(random_state=2018), parameters, n_iter=n_iter_search, cv=5, iid=False, scoring='roc_auc')

RS.fit(x_train_smote, y_train_smote)

XGB=RS.best_estimator_

print('Test set score: {:.3f}'.format(RS.score(x_test,y_test)))

Test set score: 0.774

LGBMClassifier

In [8]:

from lightgbm import LGBMClassifier

parameters = {'max_depth': [15, 20, 25, 30, 35],

              'learning_rate': [0.01, 0.02, 0.05, 0.1, 0.15],

              'feature_fraction': [0.6, 0.7, 0.8, 0.9, 0.95],

              'bagging_fraction': [0.6, 0.7, 0.8, 0.9, 0.95],

              'bagging_freq': [2, 4, 5, 6, 8],

              'lambda_l1': [0, 0.1, 0.4, 0.5, 0.6],

              'lambda_l2': [0, 10, 15, 35, 40],

              'cat_smooth': [1, 10, 15, 20, 35],

              }

n_iter_search = 20

RS = RandomizedSearchCV(LGBMClassifier(random_state=2018), parameters, n_iter=n_iter_search, cv=5, iid=False, scoring='roc_auc')

RS.fit(x_train_smote, y_train_smote)

LGBM = RS.best_estimator_

print('Test set score: {:.3f}'.format(RS.score(x_test,y_test)))

Test set score: 0.780

RFClassifier

In [9]:

from sklearn.ensemble import RandomForestClassifier

parameters = {'max_depth': [3, 4, 5, 6, 7],

              'max_features': sp_randint(1, 11),

              'min_samples_split': sp_randint(2, 11),

              'bootstrap': [True, False],

              'criterion': ['gini', 'entropy']

              }

n_iter_search = 20

RS = RandomizedSearchCV(RandomForestClassifier(random_state=2018), parameters, n_iter=n_iter_search, cv=5, iid=False, scoring='roc_auc')

RS.fit(x_train_smote, y_train_smote)

RF = RS.best_estimator_

print('Test set score: {:.3f}'.format(RS.score(x_test,y_test)))

Test set score: 0.778

LogisticRegressionCV

In [10]:

from sklearn.linear_model import LogisticRegressionCV

LR = LogisticRegressionCV(class_weight='balanced', cv=5, max_iter=1000)

2.2 模型融合

Stacking

In [18]:

from mlxtend.classifier import StackingCVClassifier

StackingModel = StackingCVClassifier(classifiers=[XGB, LGBM, RF],

                                  use_probas=True,

                                  meta_classifier=LR,

                                  cv=5,

                                  )

模型评价

生成评价指标函数

In [19]:

from sklearn import metrics

def Eva(clf, x_test, y_test):

    y_predic = clf.predict(x_test)

    y_proba = clf.predict_proba(x_test)

    acc = metrics.accuracy_score(y_test, y_predic)

    p = metrics.precision_score(y_test, y_predic)

    r = metrics.recall_score(y_test, y_predic)

    f1 = metrics.f1_score(y_test, y_predic)

    fpr, tpr, thresholds = metrics.roc_curve(y_test, y_proba[:, 1])

    auc = metrics.auc(fpr, tpr)

    return acc, p, r, f1, fpr, tpr, auc

生成绘图函数

In [20]:

def plot_roc(fprs, tprs, aucs, title):

    plt.figure()

    lw = 2

    for i, name in enumerate(models):

        plt.plot(fprs[i], tprs[i], lw=lw, label='{0} (AUC:{1:0.2f})'.format(name, aucs[i]))

    plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')

    plt.xlim([0.0, 1.0])

    plt.ylim([0.0, 1.05])

    plt.xlabel('False Positive Rate')

    plt.ylabel('True Positive Rate')

    plt.title('Receiver operating characteristic of '+title)

    plt.legend(loc="lower right")

    plt.show()

模型结果

In [21]:

models = {'LR': LR,

          'RF': RF,

          'XGB': XGB,

          'LGBM': LGBM,

          'StackingModel': StackingModel}

df_result = pd.DataFrame(columns=('Model', 'dataset', 'Accuracy', 'Precision', 'Recall', 'F1 score', 'AUC'))

row = 0

fprs_train = []

tprs_train = []

aucs_train = []

fprs_test = []

tprs_test = []

aucs_test = []

for name, clf in models.items():

    clf.fit(x_train_smote, y_train_smote)

    acc, p, r, f1, fpr_train, tpr_train, auc_train = Eva(clf, x_train, y_train)

    fprs_train.append(fpr_train)

    tprs_train.append(tpr_train)

    aucs_train.append(auc_train)

    df_result.loc[row] = [name, 'train', acc, p, r, f1, auc_train]

    row += 1

    acc, p, r, f1, fpr_test, tpr_test, auc_test = Eva(clf, x_test, y_test)

    fprs_test.append(fpr_test)

    tprs_test.append(tpr_test)

    aucs_test.append(auc_test)

    df_result.loc[row] = [name, 'test', acc, p, r, f1, auc_test]

    row += 1

print(df_result)

plot_roc(fprs_train, tprs_train, aucs_train, 'train')

plot_roc(fprs_test, tprs_test, aucs_test, 'test')

          Model dataset  Accuracy  Precision  Recall  F1 score    AUC

0            LR  train  0.76453    0.51643 0.71990  0.60142 0.82224

1            LR    test  0.72570    0.48380 0.64183  0.55172 0.76500

2            RF  train  0.87565    0.74389 0.75654  0.75016 0.92441

3            RF    test  0.75885    0.54407 0.51289  0.52802 0.77801

4            XGB  train  0.99806    1.00000 0.99215  0.99606 0.99994

5            XGB    test  0.77845    0.61803 0.41261  0.49485 0.77383

6          LGBM  train  0.99612    0.99344 0.99084  0.99214 0.99909

7          LGBM    test  0.77694    0.61778 0.39828  0.48432 0.78034

8  StackingModel  train  0.99742    0.99606 0.99346  0.99476 0.99987

9  StackingModel    test  0.78674    0.64474 0.42120  0.50953 0.79101


1


2
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容