9、基于特征面和支持向量机的人脸识别

9、基于特征面和支持向量机的人脸识别

from time import time

import logging

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

from sklearn.model_selection import GridSearchCV

from sklearn.datasets import fetch_lfw_people

from sklearn.decomposition import PCA

from sklearn.svm import SVC

logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')

lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4)

n_samples, h, w = lfw_people.images.shape

X = lfw_people.data

n_features = X.shape[1]

y = lfw_people.target

target_names = lfw_people.target_names

n_classes = target_names.shape[0]

X_train, X_test, y_train, y_test = train_test_split(

    X, y, test_size=0.25, random_state=42)

n_components = 150

t0 = time()

pca = PCA(n_components=n_components, svd_solver='randomized',

          whiten=True).fit(X_train)

eigenfaces = pca.components_.reshape((n_components, h, w))

t0 = time()

X_train_pca = pca.transform(X_train)

X_test_pca = pca.transform(X_test)

t0 = time()

param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5],

              'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], }

clf = GridSearchCV(

    SVC(kernel='rbf', class_weight='balanced'), param_grid

)

clf = clf.fit(X_train_pca, y_train)

t0 = time()

y_pred = clf.predict(X_test_pca)

def plot_gallery(images, titles, h, w, n_row=3, n_col=4):


    plt.figure(figsize=(1.8 * n_col, 2.4 * n_row))

    plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35)

    for i in range(n_row * n_col):

        plt.subplot(n_row, n_col, i + 1)

        plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray)

        plt.title(titles[i], size=12)

        plt.xticks(())

        plt.yticks(())

def title(y_pred, y_test, target_names, i):

    pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1]

    true_name = target_names[y_test[i]].rsplit(' ', 1)[-1]

    return 'predicted: %s\ntrue:      %s' % (pred_name, true_name)

prediction_titles = [title(y_pred, y_test, target_names, i)

                    for i in range(y_pred.shape[0])]

plot_gallery(X_test, prediction_titles, h, w)

eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])]

plot_gallery(eigenfaces, eigenface_titles, h, w)

plt.show()


©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容