姓名:曾国强
学号:19021210984
转载自https://zhuanlan.zhihu.com/p/76831058
【嵌牛导读】python中的迭代器是遵循迭代协议的对象,生成器可理解为一种数据类型,其自动实现迭代器协议。
【嵌牛正文】
1、迭代器协议
对象必须提供一个next方法,执行该方法后,要么返回迭代的下一项,要么引起StopIteraction异常,终止迭代
2、迭代器和迭代过程
很多容器诸如列表、字符串可以用for循环遍历对象。for 语句会调用容器对象中的 iter()函数, 该函数返回一个定义了 __next__() 方法的迭代器对象,该方法将逐一访问容器中的元素。
所以说:python中,任意对象,只要定义了__next__方法,它就是一个迭代器。因此,python中的容器如列表、元组、字典、集合、字符串都可以被称作迭代器。
讲完迭代器后,迭代就比较好理解了,迭代就是从迭代器中取元素的过程。
比如我们用for循环从列表[1,2,3]中取元素,这种遍历过程就被称作迭代。
# 列表是迭代器
for element in [1, 2, 3]:
print(element)
# 元组是迭代器
for element in (1, 2, 3):
print(element)
# 字典是迭代器
for key in {'one':1, 'two':2}:
print(key)
# 字符串是迭代器
for char in "123":
print(char)
# 打开的text同样是迭代器
for line in open("myfile.txt"):
print(line, end='')
如果你不想用for循环迭代呢?这时你可以:
先调用容器(以字符串为例)的iter()函数
再使用 next() 内置函数来调用 __next__() 方法
当元素用尽时,__next__() 将引发 StopIteration 异常
3、生成器
生成器也是一种迭代器,但是你只能对其迭代一次。这是因为它们并没有把所有的值存在内存中,而是在运行时生成值。
你通过遍历来使用它们,要么用一个for循环,要么将它们传递给任意可以进行迭代的函数和结构。大多数时候生成器是以函数来实现的。然而,它们并不返回一个值,而是yield(暂且译作“生出”)一个值。
每次对生成器调用 next() 时,它会从上次离开位置恢复执行(它会记住上次执行语句时的所有数据值)。显示如何非常容易地创建生成器的示例如下:
def reverse(data):
for index in range(len(data)-1, -1, -1):
yield data[index]
>>> for char in reverse('golf'):
... print(char)
...
f
l
o
g
可以用生成器来完成的操作同样可以用前一节所描述的基于类的迭代器来完成。但生成器的写法更为紧凑,因为它会自动建 __iter__() 和 __next__()方法。
4、生成器表达式
生成器不一定要用复杂的函数表示,python提供了简洁的生成器表达式。
从形式上来看,生成器表达式和列表推导式很像,仅仅是将列表推导式中的[]替换为(),但是两者差别挺大,生成器表达式可以说组合了迭代功能和列表解析功能。
生成器表达式可以认为是一种特殊的生成器函数,类似于lambda表达式和普通函数。但是和生成器一样,生成器表达式也是返回生成器generator对象,一次只返回一个值。
>>> sum(i*i for i in range(10)) # sum of squares
285
>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260
>>> from math import pi, sin
>>> sine_table = {x: sin(x*pi/180) for x in range(0, 91)}
>>> unique_words = set(word for line in page for word in line.split())
>>> valedictorian = max((student.gpa, student.name) for student in graduates)
>>> data = 'golf'
>>> list(data[i] for i in range(len(data)-1, -1, -1))
['f', 'l', 'o', 'g']