tcp/ip 协议(上)

TCP/IP协议

TCP/IP 是一个协议族,也是按照层次划分。共四层:应用层,传输层,互连网络层,网络接口层。
OSI网络协议模型,是一个参考模型,而TCP/IP协议是事实上的标准。TCP/IP协议参考了OSI 模型,但是并没有严格按照OSI规定的七层去划分标准,而只划分了四层,这样会更简单点,更实用。
TCP/IP协议和OSI模型也并不冲突,TCP/IP协议中的应用层协议,就对应于OSI中的应用层,表示层,会话层。
TCP/IP分层:


我们日常开发中涉及到的网络请求比如http请求和socket都是应用层的,基于tcp协议的。虽然我们没有必要去探究整个协议细节问题,但传输层tcp和udp的一些知识还是需要深入理解的。

http协议

Http协议是建立在TCP协议基础之上的,当浏览器需要从服务器获取网页数据的时候,会发出一次Http请求。Http会通过TCP建立起一个到服务器的连接通道,当本次请求需要的数据完毕后,Http会立即将TCP连接断开,这个过程是很短的。所以Http连接是一种短连接,常见应用场景是web请求,以及一些弱同步需求的场景,比如部分实时性要求不高的游戏。

TCP:传输控制协议

TCP是一种面向连接的、可靠的、基于字节流的传输层通信协议。
面向连接: 面向连接意味着使用tcp的应用程序在传输数据前必须先建立连接,需要三次握手:


三次握手

客户端主动发起连接,发送syn包,server受到包后,同时带ACK标志和SYN标志。表示对刚才客户端SYN报文的回应,seq表示序号,双方发出序号的包不一样,但一定是递增的。ACK=x+1表示,已经收到了x包,期望下一个需要为x+1的包。client受到sever的syn报文,在回复一个ACK表示确认。

为什么必须是三次握手?

信道不可靠,数据传输要可靠。三次通信是理论上的最小值(我理解的实际上需要双方互相确认,将SYN和ACK合并为一次了)。参照

可靠性:

1.确认:

接收方收到报文就会确认,发送方发送一段时间后没有收到确认就重传。



实际开发中可以根据需要是否开启延时确认,响应可能结合在一起,成一个响应,减少协议开销 。
优点:减少了数据段的个数,提高了发送效率
缺点:过多的delay会拉长RTT

2.TCP重传机制

TCP需要重传机制来保证所有的数据包都可以到达。
1)超时重传
  超时重传机制用来保证TCP传输的可靠性。每次发送数据包时,发送的数据报都有seq号,接收端收到数据后,会回复ack进行确认,表示某一seq号数据已经收到。发送方在发送了某个seq包后,等待一段时间,如果没有收到对应的ack回复,就会认为报文丢失,会重传这个数据包。

  1. 快速重传
    TCP引入了一种叫Fast Retransmit 的算法,不以时间驱动,而以数据驱动重传。也就是说,如果,包没有连续到达,就ack最后那个可能被丢了的包,如果发送方连续收到3次相同的ack,就重传。Fast Retransmit的好处是不用等timeout了再重传。
    另外一种更好的方式叫:Selective Acknowledgment (SACK)(参看RFC 2018),这种方式需要在TCP头里加一个SACK的东西,ACK还是Fast Retransmit的ACK,SACK则是汇报收到的数据碎版。
3.流量控制

TCP header中有一个Window Size字段,它其实是指接收端的窗口,即接收窗口,用来告知发送端自己所能接收的数据量,从而达到一部分流控的目的。三次握手的过程中双发发送的数据包里就带了各自的winsize,发送端的发送窗口是基于接收端的接收窗口来计算的。



(1)已经发送并且对端确认(Sent/ACKed)---------------发送窗外 缓冲区外
(2)已经发送但未收到确认数据(Sent/UnACKed)-------发送窗内 缓冲区内​
(3)允许发送但尚未防的数据​(Unsent/Inside)-----------发送窗内 缓冲区内​
(4)未发送暂不允许(Unsent/Outside)-------------------发送窗外 缓冲区内​

TCP窗口就是这样逐渐滑动,发送新的数据,滑动的依据就是发送数据已经收到ACK,确认对端收到,才能继续窗口滑动发送新的数据。可以看到窗口大小对于吞吐量有着重要影响,同时ACK响应与系统延时又密切相关。
拥塞控制下篇在写,好难写。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353

推荐阅读更多精彩内容