H264与H265相关区别了解

一、H265

H.265是ITU-T VCEGH.264之后所制定的新的视频编码标准。H.265标准围绕着现有的视频编码标准H.264,保留原来的某些技术,同时对一些相关的技术加以改进。新技术使用先进的技术用以改善码流、编码质量、延时和算法复杂度之间的关系,达到最优化设置。

具体的研究内容包括:提高压缩效率、提高鲁棒性和错误恢复能力、减少实时的时延、减少信道获取时间和随机接入时延、降低复杂度等。

H.264由于算法优化,可以低于1Mbps的速度实现标清(分辨率在1280P*720以下)数字图像传送;H.265则可以实现利用1~2Mbps的传输速度传送720P(分辨率1280*720)普通高清音视频传送。

二、H264与H265的区别

传输码率

H264由于算法优化,可以低于2Mbps的速度实现标清数字图像传送;H.265 High Profile可实现低于1.5Mbps的传输带宽下,实现1080p全高清视频传输。

除了在编解码效率上的提升外,在对网络的适应性方面H.265也有显著提升,可很好运行在Internet等复杂网络条件下。

编码架构

H.265/HEVC的编码架构大致上和H.264/AVC的架构相似,主要也包含,帧内预测(intra prediction)、帧间预测(inter prediction)、转换(transform)、量化(quantization)、去区块滤波器(deblocking filter)、熵编码(entropy coding)等模块,但在HEVC编码架构中,整体被分为了三个基本单位,分别是编码单位(coding unit, CU)、预测单位(predict unit, PU)和转换单位(transform unit, TU)。

编码单位

比起H.264/AVC,H.265/HEVC提供了更多不同的工具来降低码率,以编码单位来说,H.264中每个宏块(macroblock/MB)大小是的8x8或者16x16像素,而H.265的编码单位可以选择从最小的8x8到最大的64x64.

以该图为例,信息量不多的区域(颜色变化不明显,比如车体的红色部分和地面的灰色部分)划分的宏块较大,编码后的码字较少,而细节多的地方(轮胎)划分的宏块就相应的小和多一些,编码后的码字较多,这样就相当于对图像进行了有重点的编码,从而降低了整体的码率,编码效率就相应提高了。

图1

帧内预测方式

H.265的帧内预测模式支持33种方向(H.264只支持8种),并且提供了更好的运动补偿处理和矢量预测方法。

编码视频大小

反复的质量比较测试已经表明,在相同的图象质量下,相比于H.264,通过H.265编码的视频大小将减少大约39-44%。由于质量控制的测定方法不同,这个数据也会有相应的变化。

信噪比PSNR

通过主观视觉测试得出的数据显示,在码率减少51-74%的情况下,H.265编码视频的质量还能与H.264编码视频近似甚至更好,其本质上说是比预期的信噪比(PSNR)要好。

H.264与H.265编码视频的主观视觉测试对比,我们可以看到后者的码率比前者大大减少了。

运算需求

由于h265比较h264压缩率更高,编码视频更小,所以对机器的运算需求也要更大。

预测块大小

HEVC将之前标准中定义的宏块(macroblocks)用一种最大到64x64像素的并且可以进一步细分成可变大小的块。HEVC把编码树单元(coding tree units (CTUs))变成亮度和色度的编码块(coding tree blocks (CTBs))。一个CTB可以大小为64x64、32x32或者16x16.这样帧内(intra-picture)和帧间(inter-picture)的预测块(prediction units,PU)大小从64x64到4x4大小,只是对于双向预测,只能到8x4到4x8大小。预测残差编码的变换块大小可以是32x32、16x16、8x8、4x4.

内部色深的增加

内部色深增加(Internal bit depth increase (IBDI))可以让编码器运行在色宽更高的内部状态。IBDI最多可以作用于14-bit位宽。

并行处理工具(Parallel processing tools)

可以把图像分成独立编解码的矩形块和条带,即条带slice和tile瓷片的概念。条带大部分可以单独解码,只是最终需要同步成一个视频流。条带可以编码成条带间没有预测,互相独立。当然条带间可能还是需要环路滤波的。

熵编码(Entropy coding)

HEVC采用基于上下文自适应的熵编码算法(context-adaptive binary arithmetic coding (CABAC)),和H.264类似。只不过HEVC只支持CABAC编码。

帧内预测(intra prediction)

HEVC的帧内预测有33个方向模式,而h.264中只有8个,HEVC还指定了planar和DC帧内预测模式。

帧间预测模式

本质上H.265是在H.264基础上增加插值的抽头系数个数,改变抽头系数值以及增加运动矢量预测值的候选个数,以达到减少预测残差的目的。

H.265与H.264一样插值精度都是亮度到1/4,色度到1/8精度,但插值滤波器抽头长度和系数不同

H.265的增加了运动矢量预测值候选的个数,而H.264预测值只有一个

运动补偿(Motion compensation)

HEVC采用半像素或者1/4像素的精度运动补偿,以及7抽头或者8抽头的滤波器。H.264使用半像素精度和6抽头的滤波器。对于4:2:0视频的色度分量有1/8像素精度和4抽头的滤波器。HEVC中的加权预测可以是单向也可以是双向的预测。

运动矢量预测Motion vector prediction

HEVC定义了16-bit的水平和垂直运动矢量,支持范围到[-32768, 32767],即最多-8192到8191.75个亮度像素点,H.264只支持到-512到511.75个像素点。HEVC的MV模式有高级运动矢量预测(Advanced Motion Vector Prediction (AMVP))和合并模式。合并模式运行从邻近块继承mv向量值,从而有skip和direct模式。

环路滤波器

HEVC有两个环路滤波器,解块滤波器(DBF, deblocking filter)与样本自适应偏移量(SAO,sample adaptive offset)滤波器 (DBF)。Deblocking滤波器和H.264/MPEG-4 AVC中的类似,HEVC中的DBF只能用于8x8的块(提高并行处理性能),而H.264适用于4x4的块。HEVC中DBF的强度从0到2.对垂直边界做水平滤波,对水平边界做垂直滤波。SAO滤波器在DBF滤波器之后,为了更好的重建原始图像。每个CTB的SAO滤波器可以使能或者禁止边界偏移模式或者子段偏移模式。

去块滤波

本质上H.265的去块滤波与H.264的去块滤波及流程是一致的,做了如下最显著的改变:

滤波边界: H.264最小到4x4边界滤波;而H.265适应最新的CU、PU和TU划分结构的滤波边缘,最小滤波边界为8x8

滤波顺序:H264先宏块内采用垂直边界,再当前宏块内水平边界;而H.265先整帧的垂直边界,再整帧的水平边界。

内部比特深度增加

为了保证中间预测、变换以及量化过程中的内部比特精度,以达到更好的压缩性能

并行化设计

当前芯片架构已经从单核性能逐渐往多核并行方向发展,因此为了适应并行化程度非常高的芯片实现,HEVC/H.265 引入了很多并行运算的优化思路。

三、H265的技术特点

1.二维不可分离的自适应插补滤波器

2.可分离的 AIF

3.定向的AIF

4.不再使用运动补偿与1/8-pel运动矢量

5.Supermacroblock结构到64x64转换(H.264仅到32x32)

6.自适应预测误差编码组织(APEC)

7.自适应量化矩阵选择(AQMS)

8.运动矢量选择与编码的竞争方式

9.针对内部编码的模块相依的KLT


整体思维导图


参考文档:

https://blog.csdn.net/knowledgebao/article/details/84647323

https://baike.baidu.com/item/H.265?fr=aladdin

https://zhuanlan.zhihu.com/p/71270595?utm_source=wechat_session

https://jingyan.baidu.com/article/08b6a591701e7c14a8092212.html

https://blog.csdn.net/guoyunfei123/article/details/106241136?spm=1001.2101.3001.6650.4&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-4.no_search_link&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7ECTRLIST%7Edefault-4.no_search_link

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容