2018-12-23 MF Basic

【矩阵分解】

矩阵分解是指根据一定的原理用某种算法将一个矩阵分解成若干个矩阵的乘积。常见的矩阵分解有可逆方阵的三角(LU)分解、任意满秩矩阵的正交三角(QR)分解、对称正定矩阵的Cholesky分解,以及任意方阵的Schur分解、Hessenberg分解、EVD分解、SVD分解、GMD分解等。

(1)可逆方阵的LU分解

矩阵的LU分解就是将一个矩阵表示为一个交换下三角矩阵和一个上三角矩阵的乘积形式。线性代数中已经证明,只要方阵A是非奇异的(即可逆的),LU分解总是可以进行的。

当L为单位下三角矩阵而U为上三角矩阵时,此三角分解称为杜利特(Doolittle)分解。当L为下三角矩阵而U为单位上三角矩阵时,此三角分解称为克劳特(Crout)分解。显然,如果存在,矩阵的三角分解不是唯一的。

(PS:方阵A可唯一地分解为A=LDU(其中L,U分别为单位下,上三角矩阵,D为对角矩阵)的充分必要条件为A的前n-1个顺序主子式都不为0。特别:对n阶对称正定矩阵,存在一个非奇异下三角矩阵L,使得A=LL'成立。)

MATLAB提供的lu函数用于对矩阵进行LU分解,其调用格式为:

[L,U]=lu(X):产生一个上三角阵U和一个变换形式的下三角阵L(行交换),使之满足X=LU。注意,这里的矩阵X必须是方阵。

[L,U,P]=lu(X):产生一个上三角阵U和一个下三角阵L以及一个置换矩阵P,使之满足PX=LU。当然矩阵X同样必须是方阵。

(2)满秩矩阵的QR分解

对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和一个上三角矩阵R的乘积形式。QR分解只能对方阵进行。MATLAB的函数qr可用于对矩阵进行QR分解,其调用格式为:

[Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩阵R,使之满足X=QR。

[Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角矩阵R以及一个置换矩阵E,使之满足XE=QR。

(3)对称正定矩阵的Cholesky分解

如果矩阵X是对称正定的,则Cholesky分解将矩阵X分解成一个下三角矩阵和上三角矩阵的乘积。设上三角矩阵为R,则下三角矩阵为其转置,即X=R'R。MATLAB函数chol(X)用于对矩阵X进行Cholesky分解,其调用格式为:

R=chol(X):产生一个上三角阵R,使R'R=X。若X为非对称正定,则输出一个出错信息。

[R,p]=chol(X):这个命令格式将不输出出错信息。当X为对称正定的,则p=0,R与上述格式得到的结果相同;否则p为一个正整数。如果X为满秩矩阵,则R为一个阶数为q=p-1的上三角阵,且满足R'R=X(1:q,1:q)。

(4)任意方阵的Schur分解

任意一个n阶方阵X可以分解为X=URU',其中U为酉矩阵,R为上三角schur矩阵且其主对角线上的元素为X的特征值。

[U,R]=schur(X)

(5)任意方阵的Hessenberg分解

任意一个n阶方阵X可以分解为X=PHP', 其中P为酉矩阵, H的第一子对角线下的元素均为0,即H为Hessenberg矩阵。

[P,H]=hess(X)

(6)任意方阵的特征值分解EVD

任意一个n阶方阵X可以分解为XV=VD,其中D为X的特征值对角阵,V为X的特征向量矩阵。

[V,D]=eig(X)

[V,D]=eig(X,Y)计算广义特征值矩阵D和广义特征值向量矩阵V,使得XV=YVD。

(7)任意矩阵的奇异值分解SVD

任意一个m*n维的矩阵X可以分解为X=USV',U,V均为酉矩阵,S为m*n维的对角矩阵,其对角线元素为X的从大到小排序的非负奇异值。

[U,S,V]=svd(X)

(8)任意矩阵的几何均值分解GMD

任意矩阵m*n维的矩阵X可以分解为X=QRP', Q,P均为酉矩阵,R为k*k维的实正线上三角矩阵,其主对角线元素均等于X的所有K个正奇异值的几何均值,k=rank(X)。

(PS:一个n×n的实对称矩阵M正定的当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。对于负数的情况,定义则为:一个n×n的埃米尔特矩阵M是正定的当且仅当对于每个非零的复向量z,都有z*Mz> 0。其中z*表示z的共轭矩阵。由于M是埃米尔特矩阵,经计算可知,对于任意的复向量zz*Mz必然是实数,从而可以与0比较大小。因此这个定义是自洽的。正定方阵M的所有的特征值λi都是正的。)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容