ELK第二周笔记

Query:处理的是此文档与之的匹配程度,会计算_score(相关度分数)
Filter:仅仅计算是否匹配,回答的是“是”或者“否”,不计算分数。频繁使用的filter将被自动缓存
例:

GET /_search
{
  "query": { 
    "bool": { 
      "must": [
        { "match": { "title":   "Search"        }}, 
        { "match": { "content": "Elasticsearch" }}  
      ],
      "filter": [ 
        { "term":  { "status": "published" }}, 
        { "range": { "publish_date": { "gte": "2015-01-01" }}} 
      ]
    }
  }
}

Bool Query中,
must:匹配文档中必须出现该分句,并且会对分数产生影响
filter:匹配文档中必须出现该分句,但是不对分数产生影响
should:匹配一个或者多的should分句
must_not:匹配文档中必须不能出现该分句
例子:

POST _search
{
  "query": {
    "bool" : {
      "must" : {
        "term" : { "user" : "kimchy" }
      },
      "filter": {
        "term" : { "tag" : "tech" }
      },
      "must_not" : {
        "range" : {
          "age" : { "gte" : 10, "lte" : 20 }
        }
      },
      "should" : [
        { "term" : { "tag" : "wow" } },
        { "term" : { "tag" : "elasticsearch" } }
      ],
      "minimum_should_match" : 1,
      "boost" : 1.0
    }
  }
}

其中boost是字句权重

Aggregations:
固定形式:

"aggregations" : {
    "<aggregation_name>" : {
        "<aggregation_type>" : {
            <aggregation_body>
        }
        [,"meta" : {  [<meta_data_body>] } ]?
        [,"aggregations" : { [<sub_aggregation>]+ } ]?
    }
    [,"<aggregation_name_2>" : { ... } ]*
}

例如计算平均值:

{
    "aggs" : {
        "avg_grade" : { "avg" : { "field" : "grade" } }
    }
}

一个脚本化的例子:


    "aggs" : {
        ...

        "aggs" : {
            "avg_corrected_grade" : {
                "avg" : {
                    "field" : "grade",
                    "script" : {
                        "lang": "painless",
                        "inline": "_value * params.correction",
                        "params" : {
                            "correction" : 1.2
                        }
                    }
                }
            }
        }
    }
}

处理缺失值:

{
    "aggs" : {
        "grade_avg" : {
            "avg" : {
                "field" : "grade",
                "missing": 10 
            }
        }
    }
}

去重查询:

{
    "aggs" : {
        "author_count" : {
            "cardinality" : {
                "field" : "author"
            }
        }
    }
}

关于_all字段:

PUT my_index
{
  "mappings": {
    "type_1": { 
      "properties": {...}
    },
    "type_2": { 
      "_all": {
        "enabled": false
      },
      "properties": {...}
    }
  }
}

该字段在type_1中是有效的,2中则完全无效

Kibana部分开始...



添加完以后,可以在这里进行一些简易的搜索

画一个入门图...好好玩...


现在我们给这个饼图加上一个维度——年龄:

一个入门的柱状图,用的莎士比亚的表,配置见图:

:因为在一开始我们将play_name定义为“keyword”,所以他只能被整个匹配

如果想让Y轴不从0开始,从最小值开始,可以去Options里选择“Scale Y-Axis to data bounds”

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容