word2vec实战 skip gram

停用词 stop_words.txt 文件可以自己生成,每个一行,内容可参考另一篇文档

2800.txt 文件是待训练文件,可以自己任意找一篇中文简体文档, 格式为txt文件

-- coding: utf-8 --

"""
Created on Sat Jul 13 13:22:43 2019
@author:
"""

-- coding:utf-8 --

import tensorflow as tf
import numpy as np
import math
import collections
import pickle as pkl
from pprint import pprint

from pymongo import MongoClient

import re
import jieba
import os.path as path
import os

需要指定文档目录 os.chdir("D:\tensorflow\word2vec")

class word2vec():
def init(self,
vocab_list=None,
embedding_size=200,
win_len=3, # 单边窗口长
num_sampled=1000,
learning_rate=0.5,
logdir='/tmp/simple_word2vec',
model_path= None
):
# 获得模型的基本参数
self.batch_size = None # 一批中数据个数, 目前是根据情况来的
if model_path!=None:
self.load_model(model_path)
else:
# model parameters
assert type(vocab_list)==list
self.vocab_list = vocab_list
self.vocab_size = vocab_list.len()
self.embedding_size = embedding_size
self.win_len = win_len
self.num_sampled = num_sampled
self.learning_rate = learning_rate
self.logdir = logdir
self.word2id = {} # word => id 的映射
for i in range(self.vocab_size):
self.word2id[self.vocab_list[i]] = i
# train times
self.train_words_num = 0 # 训练的单词对数
self.train_sents_num = 0 # 训练的句子数
self.train_times_num = 0 # 训练的次数(一次可以有多个句子)
# train loss records
self.train_loss_records = collections.deque(maxlen=10) # 保存最近10次的误差
self.train_loss_k10 = 0
self.build_graph()
self.init_op()
if model_path!=None:
tf_model_path = os.path.join(model_path,'tf_vars')
self.saver.restore(self.sess,tf_model_path)
def init_op(self):
self.sess = tf.Session(graph=self.graph)
self.sess.run(self.init)
self.summary_writer = tf.summary.FileWriter(self.logdir, self.sess.graph)
def build_graph(self):
self.graph = tf.Graph()
with self.graph.as_default():
self.train_inputs = tf.placeholder(tf.int32, shape=[self.batch_size])
self.train_labels = tf.placeholder(tf.int32, shape=[self.batch_size, 1])
self.embedding_dict = tf.Variable(
tf.random_uniform([self.vocab_size,self.embedding_size],-1.0,1.0)
)
self.nce_weight = tf.Variable(tf.truncated_normal([self.vocab_size, self.embedding_size],
stddev=1.0/math.sqrt(self.embedding_size)))
self.nce_biases = tf.Variable(tf.zeros([self.vocab_size]))
# 将输入序列向量化
embed = tf.nn.embedding_lookup(self.embedding_dict, self.train_inputs) # batch_size
# 得到NCE损失
self.loss = tf.reduce_mean(
tf.nn.nce_loss(
weights = self.nce_weight,
biases = self.nce_biases,
labels = self.train_labels,
inputs = embed,
num_sampled = self.num_sampled,
num_classes = self.vocab_size
)
)
# tensorboard 相关
tf.summary.scalar('loss',self.loss) # 让tensorflow记录参数
# 根据 nce loss 来更新梯度和embedding
self.train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(self.loss) # 训练操作
# 计算与指定若干单词的相似度
self.test_word_id = tf.placeholder(tf.int32,shape=[None])
vec_l2_model = tf.sqrt( # 求各词向量的L2模
tf.reduce_sum(tf.square(self.embedding_dict),1,keep_dims=True)
)
avg_l2_model = tf.reduce_mean(vec_l2_model)
tf.summary.scalar('avg_vec_model',avg_l2_model)
self.normed_embedding = self.embedding_dict / vec_l2_model
# self.embedding_dict = norm_vec # 对embedding向量正则化
test_embed = tf.nn.embedding_lookup(self.normed_embedding, self.test_word_id)
self.similarity = tf.matmul(test_embed, self.normed_embedding, transpose_b=True)
# 变量初始化
self.init = tf.global_variables_initializer()
self.merged_summary_op =tf.summary.merge_all()
self.saver = tf.train.Saver()
def train_by_sentence(self, input_sentence=[]):
# input_sentence: [sub_sent1, sub_sent2, ...]
# 每个sub_sent是一个单词序列,例如['这次','大选','让']
sent_num = input_sentence.len()
batch_inputs = []
batch_labels = []
for sent in input_sentence:
for i in range(sent.len()):
start = max(0,i-self.win_len)
end = min(sent.len(),i+self.win_len+1)
for index in range(start,end):
if index == i:
continue
else:
input_id = self.word2id.get(sent[i])
label_id = self.word2id.get(sent[index])
if not (input_id and label_id):
continue
batch_inputs.append(input_id)
batch_labels.append(label_id) #skip gram method
if len(batch_inputs)==0:
return
batch_inputs = np.array(batch_inputs,dtype=np.int32)
batch_labels = np.array(batch_labels,dtype=np.int32)
batch_labels = np.reshape(batch_labels,[batch_labels.len(),1])
feed_dict = {
self.train_inputs: batch_inputs,
self.train_labels: batch_labels
}
_, loss_val, summary_str = self.sess.run([self.train_op,self.loss,self.merged_summary_op], feed_dict=feed_dict)
# train loss
self.train_loss_records.append(loss_val)
# self.train_loss_k10 = sum(self.train_loss_records)/self.train_loss_records.len()
self.train_loss_k10 = np.mean(self.train_loss_records)
if self.train_sents_num % 1000 == 0 :
self.summary_writer.add_summary(summary_str,self.train_sents_num)
print("{a} sentences dealed, loss: {b}"
.format(a=self.train_sents_num,b=self.train_loss_k10))
# train times
self.train_words_num += batch_inputs.len()
self.train_sents_num += input_sentence.len()
self.train_times_num += 1
def cal_similarity(self,test_word_id_list,top_k=10):
sim_matrix = self.sess.run(self.similarity, feed_dict={self.test_word_id:test_word_id_list})
sim_mean = np.mean(sim_matrix)
sim_var = np.mean(np.square(sim_matrix-sim_mean))
test_words = []
near_words = []
for i in range(test_word_id_list.len()):
test_words.append(self.vocab_list[test_word_id_list[i]])
nearst_id = (-sim_matrix[i,:]).argsort()[1:top_k+1]
nearst_word = [self.vocab_list[x] for x in nearst_id]
near_words.append(nearst_word)
return test_words,near_words,sim_mean,sim_var
def save_model(self, save_path):
if os.path.isfile(save_path):
raise RuntimeError('the save path should be a dir')
if not os.path.exists(save_path):
os.mkdir(save_path)
# 记录模型各参数
model = {}
var_names = ['vocab_size', # int model parameters
'vocab_list', # list
'learning_rate', # int
'word2id', # dict
'embedding_size', # int
'logdir', # str
'win_len', # int
'num_sampled', # int
'train_words_num', # int train info
'train_sents_num', # int
'train_times_num', # int
'train_loss_records', # int train loss
'train_loss_k10', # int
]
for var in var_names:
model[var] = eval('self.'+var)
param_path = os.path.join(save_path,'params.pkl')
if os.path.exists(param_path):
os.remove(param_path)
with open(param_path,'wb') as f:
pkl.dump(model,f)
# 记录tf模型
tf_path = os.path.join(save_path,'tf_vars')
if os.path.exists(tf_path):
os.remove(tf_path)
self.saver.save(self.sess,tf_path)
def load_model(self, model_path):
if not os.path.exists(model_path):
raise RuntimeError('file not exists')
param_path = os.path.join(model_path,'params.pkl')
with open(param_path,'rb') as f:
model = pkl.load(f)
self.vocab_list = model['vocab_list']
self.vocab_size = model['vocab_size']
self.logdir = model['logdir']
self.word2id = model['word2id']
self.embedding_size = model['embedding_size']
self.learning_rate = model['learning_rate']
self.win_len = model['win_len']
self.num_sampled = model['num_sampled']
self.train_words_num = model['train_words_num']
self.train_sents_num = model['train_sents_num']
self.train_times_num = model['train_times_num']
self.train_loss_records = model['train_loss_records']
self.train_loss_k10 = model['train_loss_k10']
if name=='main':
# step 1 读取停用词
stop_words = []
with open('stop_words.txt',encoding= 'utf-8') as f:
line = f.readline()
while line:
stop_words.append(line[:-1])
line = f.readline()
stop_words = set(stop_words)
print('停用词读取完毕,共{n}个单词'.format(n=len(stop_words)))
# step2 读取文本,预处理,分词,得到词典
raw_word_list = []
sentence_list = []
with open('2800.txt',encoding='gbk') as f:
line = f.readline()
while line:
while '\n' in line:
line = line.replace('\n','')
while ' ' in line:
line = line.replace(' ','')
if len(line)>0: # 如果句子非空
raw_words = list(jieba.cut(line,cut_all=False))
dealed_words = []
for word in raw_words:
if word not in stop_words and word not in ['qingkan520','www','com','http']:
raw_word_list.append(word)
dealed_words.append(word)
sentence_list.append(dealed_words)
line = f.readline()
word_count = collections.Counter(raw_word_list)
print('文本中总共有{n1}个单词,不重复单词数{n2},选取前30000个单词进入词典'
.format(n1=len(raw_word_list),n2=len(word_count)))
word_count = word_count.most_common(30000)
word_list = [x[0] for x in word_count]
# 创建模型,训练
w2v = word2vec(vocab_list=word_list, # 词典集
embedding_size=200,
win_len=2,
learning_rate=1,
num_sampled=100, # 负采样个数
logdir='/tmp/280') # tensorboard记录地址

num_steps = 10000
for i in range(num_steps):
    #print (i%len(sentence_list))
    sent = sentence_list[i%len(sentence_list)]
    w2v.train_by_sentence([sent])
w2v.save_model('model')

w2v.load_model('model')
test_word = ['天地','级别']  #替换成自己文档中的单词
test_id = [word_list.index(x) for x in test_word]
test_words,near_words,sim_mean,sim_var = w2v.cal_similarity(test_id)
print (test_words,near_words,sim_mean,sim_var)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容