人脸检测-SSH 分析

这篇文章是用one-stage的方法实现快、准、轻的人脸检测,骨干网络用的是VGG-16,去除了所谓的head,即最后的3个全连接层。最后的分类和bbox回归用RPN的anchor实现,相比faster-rcnn中的anchor,本文作者只是用1:1的宽高比,作者在实验中发现不同的宽高比对实验精度的提高没有太大帮助。

本文在VGG之上构建了三个并行网络,M1,M2,M3分别用来检测小、中、大人脸。如下图一:


图一   SHH网络构架

我这里从中间的M2说起,在VGG-16的最后一个卷积层conv5输出之后分成两路,上面一路用于检测中型人脸,下面一路用于跟M1进行特征融合,先通过1x1卷积降维(128),然后通过双线性插值上采样。M2的这一步是参考FPN(特征金字塔)的将高维特征和低维特征融合来获得更多文本语义信息,这样有助于检测小物体,比如小人脸。M1,M3这块的大体检测没啥好讲的,图一表述的很清楚了。

接下去来讲讲这里面的Detection Module部分,如图二:


图二 Detection Module 构架


Detection Module 采用并行连接,3x3卷积+上下文检测模块,然后concat连接,最后通过1x1卷积分类和bbox回归,这样的方法还是挺新颖的,用1x1卷积干这种事,之前用于代替全连接层干这些活的就只有是全局平局池化。这里面的S是步长的意思,本文作者的设定分别是8,16,32。

然后就是Context module 模块,如下图三:



图三 Context module构架

顾名思义这个模块主要用来增强上下文语义信息,它的思想来自Google出的Inceotion系列,增加宽度。用卷积核为5x5,7x7来进行操作,但是为了减小计算量用2个3x3和3个3x3代替上面两者,因为5x5,7x7的感受野跟2个3x3和3个3x3一样,但计算量明显小很多,5x5→2x3x3,7x7→3x3x3。

最后作者还强调因为把VGG-16的head 去掉了,所以用Online hard negative and positive mining方法训练变得很重要,这个方法是2016提出的,具体怎么样的我也还不清楚,接下去要去看一下这篇文章。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,711评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,079评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,194评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,089评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,197评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,306评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,338评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,119评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,541评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,846评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,014评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,694评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,322评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,026评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,257评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,863评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,895评论 2 351

推荐阅读更多精彩内容