冒泡排序、插入排序、选择排序时间复杂度都是O(n2)

  1. 原地排序(Sorted in place)。原地排序算法, 就是特指空间复杂度是O(1)的排序算法。我们今天讲的三种排序算法,都是原地排序算法。

  2. 排序算法的稳定性: 仅仅用执行效率和内存消耗来衡量排序算法的好坏是不够的。针对排序算法,我们还有一个重要的 度量指标,稳定性。这个概念是说,如果待排序的序列中存在值相等的元素,经过排序之后,相等 元素之间原有的先后顺序不变。 我通过一个例子来解释一下。比如我们有一组数据2,9,3,4,8,3,按照大小排序之后就是 2,3,3,4,8,9。 这组数据里有两个3。经过某种排序算法排序之后,如果两个3的前后顺序没有改变,那我们就把这 种排序算法叫作稳定的排序算法;如果前后顺序发生变化,那对应的排序算法就叫作不稳定的排序 算法。

冒泡排序(Bubble Sort):

(相邻元素交换顺序)
冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为O(1), 是一个原地排序算法。
第二,冒泡排序是稳定的排序算法吗? 在冒泡排序中,只有交换才可以改变两个元素的前后顺序。为了保证冒泡排序算法的稳定性,当有 相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序,所以 冒泡排序是稳定的排序算法。
第三,冒泡排序的时间复杂度是多少?
最好情况下,要排序的数据已经是有序的了,我们只需要进行一次冒泡操作,就可以结束了,所以 最好情况时间复杂度是O(n)。而最坏的情况是,要排序的数据刚好是倒序排列的,我们需要进行n 次冒泡操作,所以最坏情况时间复杂度为O(n2)。

插入排序(Insertion Sort)

(第一个数是排序好的和后面是无序的数字,左边是排序好的,右边是没排序好的,从右边拿第一个数和左边倒叙循环判断插入到指定位置)
首先,我们将数组中的数据分为两个区间,已排序区间和未排序区间。初始已排序区间只有一个元 素,就是数组的第一个元素。插入算法的核心思想是取未排序区间中的元素,在已排序区间中找到 合适的插入位置将其插入,并保证已排序区间数据一直有序。重复这个过程,直到未排序区间中元 素为空,算法结束。
第一,插入排序是原地排序算法吗?
从实现过程可以很明显地看出,插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),也就是说,这是一个原地排序算法。
第二,插入排序是稳定的排序算法吗? 在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后 面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。 第三,插入排序的时间复杂度是多少? 如果要排序的数据已经是有序的,我们并不需要搬移任何数据。如果我们从尾到头在有序数据组里 面查找插入位置,每次只需要比较一个数据就能确定插入的位置。所以这种情况下,最好是时间复 杂度为O(n)。注意,这里是从尾到头遍历已经有序的数据。 如果数组是倒序的,每次插入都相当于在数组的第一个位置插入新的数据,所以需要移动大量的数
2
据,所以最坏情况时间复杂度为O(n2)。 还记得我们在数组中插入一个数据的平均时间复杂度是多少吗?没错,是O(n)。所以,对于插入排 序来说,每次插入操作都相当于在数组中插入一个数据,循环执行n次插入操作,所以平均时间复 杂度为O(n2)。

选择排序(Selection Sort)

选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会 从未排序区间中找到最小的元素,将其放到已排序区间的末尾。
选择排序是一种不稳定的排序算法。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350