i430 区间dp

图片.png
//my
class Solution {
public:
    bool isScramble(string &s1, string &s2) {
        int m = s1.size(), n = s2.size();
        if (m != n)
            return false;
        vector<vector<vector<bool>>> dp(m, vector<vector<bool>>(m, vector<bool>(m + 1, false)));
        for (int i = 0; i < m; i++) {
            for (int j = 0; j < m; j++) {
                dp[i][j][1] = (s1[i] == s2[j]);
            }
        }

        for (int k = 2; k <= m; k++) {
            for (int i = 0; i <= m - k; i++) {
                for (int j = 0; j <= m - k; j++) {
                    for (int w = 1; w < k; w++) {
                        if (dp[i][j][w] && dp[i + w][j + w][k - w]) {
                            dp[i][j][k] = true;
                            break;
                        }
                        if (dp[i][j + k - w][w] && dp[i + w][j][k - w]) {
                            dp[i][j][k] = true;
                            break;
                        }
                    }
                }
            }
        }
        return dp[0][0][m];
    }
};
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,294评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,780评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,001评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,593评论 1 289
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,687评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,679评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,667评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,426评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,872评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,180评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,346评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,019评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,658评论 3 323
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,268评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,495评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,275评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,207评论 2 352

推荐阅读更多精彩内容

  • 一.经典例题 题目地址: 【P1880】[NOI1995]石子合并 - 洛谷 二.分析 转移方程 dp_max[i...
    旧人旧事旧时光_4d20阅读 1,334评论 0 1
  • 简介 区间dp,顾名思义就是在一段区间上进行动态规划。对于每段区间,他们的最优值都是由几段更小区间的最优值得到,是...
    Steven1997阅读 6,520评论 0 2
  • 区间DP,对于每段小区间,它的最优值是由更小的区间的最优值得出的,由此往下划分,直到单个元素,由他们的组合合并得出...
    Cyril1317阅读 343评论 0 0
  • 区间类DP的做法,是用memorized search,把大区间拆分为小区间来解。而dp[i][j] 则直观的表示...
    stepsma阅读 593评论 0 1
  • 题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1090 大...
    AmadeusChan阅读 279评论 0 0