爬虫系列(二十):CrawlSpiders

通过下面的命令可以快速创建 CrawlSpider模板 的代码:

    scrapy genspider -t crawl tencent tencent.com

上一个案例中,我们通过正则表达式,制作了新的url作为Request请求参数,现在我们可以换个花样...

  class scrapy.spiders.CrawlSpider

它是Spider的派生类,Spider类的设计原则是只爬取start_url列表中的网页,而CrawlSpider类定义了一些规则(rule)来提供跟进link的方便的机制,从爬取的网页中获取link并继续爬取的工作更适合。

源码参考

    class CrawlSpider(Spider):
        rules = ()
        def __init__(self, *a, **kw):
            super(CrawlSpider, self).__init__(*a, **kw)
            self._compile_rules()

        #首先调用parse()来处理start_urls中返回的response对象
        #parse()则将这些response对象传递给了_parse_response()函数处理,并设置回调函数为parse_start_url()
        #设置了跟进标志位True
        #parse将返回item和跟进了的Request对象    
        def parse(self, response):
            return self._parse_response(response, self.parse_start_url, cb_kwargs={}, follow=True)

        #处理start_url中返回的response,需要重写
        def parse_start_url(self, response):
            return []

        def process_results(self, response, results):
            return results

        #从response中抽取符合任一用户定义'规则'的链接,并构造成Resquest对象返回
        def _requests_to_follow(self, response):
            if not isinstance(response, HtmlResponse):
                return
            seen = set()
            #抽取之内的所有链接,只要通过任意一个'规则',即表示合法
            for n, rule in enumerate(self._rules):
                links = [l for l in rule.link_extractor.extract_links(response) if l not in seen]
                #使用用户指定的process_links处理每个连接
                if links and rule.process_links:
                    links = rule.process_links(links)
                #将链接加入seen集合,为每个链接生成Request对象,并设置回调函数为_repsonse_downloaded()
                for link in links:
                    seen.add(link)
                    #构造Request对象,并将Rule规则中定义的回调函数作为这个Request对象的回调函数
                    r = Request(url=link.url, callback=self._response_downloaded)
                    r.meta.update(rule=n, link_text=link.text)
                    #对每个Request调用process_request()函数。该函数默认为indentify,即不做任何处理,直接返回该Request.
                    yield rule.process_request(r)

        #处理通过rule提取出的连接,并返回item以及request
        def _response_downloaded(self, response):
            rule = self._rules[response.meta['rule']]
            return self._parse_response(response, rule.callback, rule.cb_kwargs, rule.follow)

        #解析response对象,会用callback解析处理他,并返回request或Item对象
        def _parse_response(self, response, callback, cb_kwargs, follow=True):
            #首先判断是否设置了回调函数。(该回调函数可能是rule中的解析函数,也可能是 parse_start_url函数)
            #如果设置了回调函数(parse_start_url()),那么首先用parse_start_url()处理response对象,
            #然后再交给process_results处理。返回cb_res的一个列表
            if callback:
                #如果是parse调用的,则会解析成Request对象
                #如果是rule callback,则会解析成Item
                cb_res = callback(response, **cb_kwargs) or ()
                cb_res = self.process_results(response, cb_res)
                for requests_or_item in iterate_spider_output(cb_res):
                    yield requests_or_item

            #如果需要跟进,那么使用定义的Rule规则提取并返回这些Request对象
            if follow and self._follow_links:
                #返回每个Request对象
                for request_or_item in self._requests_to_follow(response):
                    yield request_or_item

        def _compile_rules(self):
            def get_method(method):
                if callable(method):
                    return method
                elif isinstance(method, basestring):
                    return getattr(self, method, None)

            self._rules = [copy.copy(r) for r in self.rules]
            for rule in self._rules:
                rule.callback = get_method(rule.callback)
                rule.process_links = get_method(rule.process_links)
                rule.process_request = get_method(rule.process_request)

        def set_crawler(self, crawler):
            super(CrawlSpider, self).set_crawler(crawler)
            self._follow_links = crawler.settings.getbool('CRAWLSPIDER_FOLLOW_LINKS', True)

CrawlSpider继承于Spider类,除了继承过来的属性外(name、allow_domains),还提供了新的属性和方法:

LinkExtractors

class scrapy.linkextractors.LinkExtractor

Link Extractors 的目的很简单: 提取链接。

每个LinkExtractor有唯一的公共方法是 extract_links(),它接收一个 Response 对象,并返回一个 scrapy.link.Link 对象。

Link Extractors要实例化一次,并且 extract_links 方法会根据不同的 response 调用多次提取链接。

    class scrapy.linkextractors.LinkExtractor(
        allow = (),
        deny = (),
        allow_domains = (),
        deny_domains = (),
        deny_extensions = None,
        restrict_xpaths = (),
        tags = ('a','area'),
        attrs = ('href'),
        canonicalize = True,
        unique = True,
        process_value = None
    )

主要参数:

  • allow:满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。

  • deny:与这个正则表达式(或正则表达式列表)不匹配的URL一定不提取。

  • allow_domains:会被提取的链接的domains。

  • deny_domains:一定不会被提取链接的domains。

  • restrict_xpaths:使用xpath表达式,和allow共同作用过滤链接。

rules

在rules中包含一个或多个Rule对象,每个Rule对爬取网站的动作定义了特定操作。如果多个rule匹配了相同的链接,则根据规则在本集合中被定义的顺序,第一个会被使用。

    class scrapy.spiders.Rule(
            link_extractor, 
            callback = None, 
            cb_kwargs = None, 
            follow = None, 
            process_links = None, 
            process_request = None
    )
  • link_extractor:是一个Link Extractor对象,用于定义需要提取的链接。

  • callback: 从link_extractor中每获取到链接时,参数所指定的值作为回调函数,该回调函数接受一个response作为其第一个参数。

注意:当编写爬虫规则时,避免使用parse作为回调函数。由于CrawlSpider使用parse方法来实现其逻辑,如果覆盖了 parse方法,crawl spider将会运行失败。

  • follow:是一个布尔(boolean)值,指定了根据该规则从response提取的链接是否需要跟进。 如果callback为None,follow 默认设置为True ,否则默认为False。

  • process_links:指定该spider中哪个的函数将会被调用,从link_extractor中获取到链接列表时将会调用该函数。该方法主要用来过滤。

  • process_request:指定该spider中哪个的函数将会被调用, 该规则提取到每个request时都会调用该函数。 (用来过滤request)

爬取规则(Crawling rules)

继续用腾讯招聘为例,给出配合rule使用CrawlSpider的例子:

1.首先运行

 scrapy shell "http://hr.tencent.com/position.php?&start=0#a"

2.导入LinkExtractor,创建LinkExtractor实例对象。:

   from scrapy.linkextractors import LinkExtractor

   page_lx = LinkExtractor(allow=('position.php?&start=\d+'))

allow : LinkExtractor对象最重要的参数之一,这是一个正则表达式,必须要匹配这个正则表达式(或正则表达式列表)的URL才会被提取,如果没有给出(或为空), 它会匹配所有的链接。

deny : 用法同allow,只不过与这个正则表达式匹配的URL不会被提取)。它的优先级高于 allow 的参数,如果没有给出(或None), 将不排除任何链接。

3.调用LinkExtractor实例的extract_links()方法查询匹配结果:

   page_lx.extract_links(response)

4.没有查到:

 []

5.注意转义字符的问题,继续重新匹配:

    page_lx = LinkExtractor(allow=('position\.php\?&start=\d+'))
  # page_lx = LinkExtractor(allow = ('start=\d+'))

   page_lx.extract_links(response)
image.png

CrawlSpider 版本

那么,scrapy shell测试完成之后,修改以下代码

  #提取匹配 'http://hr.tencent.com/position.php?&start=\d+'的链接
  page_lx = LinkExtractor(allow = ('start=\d+'))

  rules = [
#提取匹配,并使用spider的parse方法进行分析;并跟进链接(没有callback意味着follow默认为True)
Rule(page_lx, callback = 'parse', follow = True)
]

这么写对吗?

不对!千万记住 callback 千万不能写 parse,再次强调:由于CrawlSpider使用parse方法来实现其逻辑,如果覆盖了 parse方法,crawl spider将会运行失败。

    #tencent.py

    import scrapy
    from scrapy.spiders import CrawlSpider, Rule
    from scrapy.linkextractors import LinkExtractor
    from mySpider.items import TencentItem

    class TencentSpider(CrawlSpider):
        name = "tencent"
        allowed_domains = ["hr.tencent.com"]
        start_urls = [
            "http://hr.tencent.com/position.php?&start=0#a"
        ]

        page_lx = LinkExtractor(allow=("start=\d+"))

        rules = [
            Rule(page_lx, callback = "parseContent", follow = True)
        ]

        def parseContent(self, response):
            for each in response.xpath('//*[@class="even"]'):
                name = each.xpath('./td[1]/a/text()').extract()[0]
                detailLink = each.xpath('./td[1]/a/@href').extract()[0]
                positionInfo = each.xpath('./td[2]/text()').extract()[0]

                peopleNumber = each.xpath('./td[3]/text()').extract()[0]
                workLocation = each.xpath('./td[4]/text()').extract()[0]
                publishTime = each.xpath('./td[5]/text()').extract()[0]
                #print name, detailLink, catalog,recruitNumber,workLocation,publishTime

                item = TencentItem()
                item['name']=name.encode('utf-8')
                item['detailLink']=detailLink.encode('utf-8')
                item['positionInfo']=positionInfo.encode('utf-8')
                item['peopleNumber']=peopleNumber.encode('utf-8')
                item['workLocation']=workLocation.encode('utf-8')
                item['publishTime']=publishTime.encode('utf-8')

                yield item

        # parse() 方法不需要写     
        # def parse(self, response):                                              
        #     pass

运行: scrapy crawl tencent

Logging

Scrapy提供了log功能,可以通过 logging 模块使用。

可以修改配置文件settings.py,任意位置添加下面两行,效果会清爽很多。

  LOG_FILE = "TencentSpider.log"
  LOG_LEVEL = "INFO"

Log levels

  • Scrapy提供5层logging级别:

  • CRITICAL - 严重错误(critical)

  • ERROR - 一般错误(regular errors)

  • WARNING - 警告信息(warning messages)

  • INFO - 一般信息(informational messages)

  • DEBUG - 调试信息(debugging messages)

logging设置

通过在setting.py中进行以下设置可以被用来配置logging:

1.LOG_ENABLED 默认: True,启用logging
2.LOG_ENCODING 默认: 'utf-8',logging使用的编码
3.LOG_FILE 默认: None,在当前目录里创建logging输出文件的文件名
4LOG_LEVEL 默认: 'DEBUG',log的最低级别
LOG_STDOUT 默认: False 如果为 True,进程所有的标准输出(及错误)将会被重定向到log中。例如,执行 print "hello" ,其将会在Scrapy log中显示。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,029评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,238评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,576评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,214评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,324评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,392评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,416评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,196评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,631评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,919评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,090评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,767评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,410评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,090评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,328评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,952评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,979评论 2 351

推荐阅读更多精彩内容