PCA分析

1.数据标准化

为了统一数据的量纲并对数据进行中心化,在主成分分析之前往往需要对原始数据进行标准化。下面以R语言自带的iris范例数据集为例,探索一下主成分分析的具体过程。

#将R自带的范例数据集iris储存为变量data;
data<-iris
head(data)
#对原数据进行z-score归一化;
dt<-as.matrix(scale(data[,1:4]))
head(dt)

2.计算相关系数(协方差)矩阵

既然主成分分析主要是选取解释变量方差最大的主成分,故先需要计算变量两两之间协方差,根据协方差与方差的关系,位于协方差矩阵对角线上的数值即为相应变量的方差。此外,由于对数据进行了Z-score归一化(变量的均值为0,标准差为1);因此,根据相关系数的计算公式可知,此时相关系数其实等于协方差。

#计算相关系数矩阵;
rm1<-cor(dt)
rm1

3.求解特征值和相应的特征向量

rs1<-eigen(rm1)
rs1
#提取结果中的特征值,即各主成分的方差;
val <- rs1$values
#换算成标准差(Standard deviation);
(Standard_deviation <- sqrt(val))
#计算方差贡献率和累积贡献率;
(Proportion_of_Variance <- val/sum(val))
(Cumulative_Proportion <- cumsum(Proportion_of_Variance))
#碎石图绘制;
par(mar=c(6,6,2,2))
plot(rs1$values,type="b",
cex=2,
cex.lab=2,
cex.axis=2,
lty=2,
lwd=2,
xlab = "PC",
ylab="Eigenvalue (Principal Component Variance)")
碎石.png

4.计算主成分得分

#提取结果中的特征向量(也称为Loadings,载荷矩阵);
(U<-as.matrix(rs1$vectors))
#进行矩阵乘法,获得PC score;
PC <-dt %*% U
colnames(PC) <- c("PC1","PC2","PC3","PC4")
head(PC)

5.绘制主成分散点图

#将iris数据集的第5列数据合并进来;
df<-data.frame(PC,iris$Species)
head(df)
#载入ggplot2包;
library(ggplot2)
#提取主成分的方差贡献率,生成坐标轴标题;
xlab<-paste0("PC1(",round(Proportion_of_Variance[1]*100,2),"%)")
ylab<-paste0("PC2(",round(Proportion_of_Variance[2]*100,2),"%)")
#绘制散点图并添加置信椭圆;
p1<-ggplot(data = df,aes(x=PC1,y=PC2,color=iris.Species))+
stat_ellipse(aes(fill=iris.Species),
type ="norm", geom ="polygon",alpha=0.2,color=NA)+
geom_point()+labs(x=xlab,y=ylab,color="")+
guides(fill=F)
p1

下面,尝试使用3个主成分绘制3D散点图。

#载入scatterplot3d包;
library(scatterplot3d)
color = c(rep('purple',50),rep('orange',50),rep('blue',50))
scatterplot3d(df[,1:3],color=color,
pch = 16,angle=30,
box=T,type="p",
lty.hide=2,lty.grid = 2)
legend("topleft",c('Setosa','Versicolor','Virginica'),
fill=c('purple','orange','blue'),box.col=NA)

参考:https://zhuanlan.zhihu.com/p/354086571

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342