【转载】Spark Yarn-cluster与Yarn-client

转载自:https://www.cnblogs.com/MOBIN/p/5857314.html

摘要

在Spark中,有Yarn-Client和Yarn-Cluster两种模式可以运行在Yarn上,通常Yarn-Cluster适用于生产环境,而Yarn-Clientr更适用于交互,调试模式,以下是它们的区别


Spark插拨式资源管理

Spark支持Yarn,Mesos,Standalone三种集群部署模式,它们的共同点:Master服务(Yarn

ResourceManager,Mesos master,Spark

standalone)来决定哪些应用可以运行以及在哪什么时候运行,Slave服务(Yarn

NodeManger)运行在每个节点上,节点上实际运行着Executor进程,此外还监控着它们的运行状态以及资源的消耗


Spark On Yarn的优势

1. Spark支持资源动态共享,运行于Yarn的框架都共享一个集中配置好的资源池

2. 可以很方便的利用Yarn的资源调度特性来做分类·,隔离以及优先级控制负载,拥有更灵活的调度策略

3.Yarn可以自由地选择executor数量

4.Yarn是唯一支持Spark安全的集群管理器,使用Yarn,Spark可以运行于Kerberized Hadoop之上,在它们进程之间进行安全认证 


Yarn-cluster VS Yarn-client

当在Spark On Yarn模式下,每个Spark Executor作为一个Yarn container在运行,同时支持多个任务在同一个container中运行,极大地节省了任务的启动时间


Appliaction Master

为了更好的理解这两种模式的区别先了解下Yarn的Application

Master概念,在Yarn中,每个application都有一个Application

Master进程,它是Appliaction启动的第一个容器,它负责从ResourceManager中申请资源,分配资源,同时通知NodeManager来为Application启动container,Application

Master避免了需要一个活动的client来维持,启动Applicatin的client可以随时退出,而由Yarn管理的进程继续在集群中运行

 

Yarn-cluster

在Yarn-cluster模式下,driver运行在Appliaction Master上,Appliaction

Master进程同时负责驱动Application和从Yarn中申请资源,该进程运行在Yarn

container内,所以启动Application

Master的client可以立即关闭而不必持续到Application的生命周期,下图是yarn-cluster模式

Yarn-cluster模式下作业执行流程:

1. 客户端生成作业信息提交给ResourceManager(RM)

2. RM在某一个NodeManager(由Yarn决定)启动container并将Application Master(AM)分配给该NodeManager(NM)

3. NM接收到RM的分配,启动Application Master并初始化作业,此时这个NM就称为Driver

4. Application向RM申请资源,分配资源同时通知其他NodeManager启动相应的Executor

5. Executor向NM上的Application Master注册汇报并完成相应的任务


Yarn-client

在Yarn-client中,Application Master仅仅从Yarn中申请资源给Executor,之后client会跟container通信进行作业的调度,下图是Yarn-client模式

Yarn-client模式下作业执行流程:

1. 客户端生成作业信息提交给ResourceManager(RM)

2. RM在本地NodeManager启动container并将Application Master(AM)分配给该NodeManager(NM)

3. NM接收到RM的分配,启动Application Master并初始化作业,此时这个NM就称为Driver

4. Application向RM申请资源,分配资源同时通知其他NodeManager启动相应的Executor

5. Executor向本地启动的Application Master注册汇报并完成相应的任务


下表是Spark Standalone与Spark On Yarn模式下的比较

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容

  • 在飞驰的列车外,雨淅淅沥沥得下着。每当下雨天,总会让敬美陷进沉思。那昔日雨天的回忆太过浪漫和甜美,以至于变成了雨天...
    jiu果阅读 540评论 2 0
  • 今天做了一件错事。填写季度报表写错了,不敢吭气,怎么修改好呢。
    烟涩寒阅读 194评论 0 0
  • 郭相麟 成为一个相信自己的人,是一个终生成长的过程,在这个过程中,你要有专注的目光,要拥有鹰一样的敏锐,专注性与...
    郭相麟阅读 450评论 0 0