方差齐次性检验Comparing Variances in R

在STHDA网站Comparing Variances in R 一文中,专门对正态性检验做了详致的说明,翻译并整理入下:

图片.png

(一) F检验F-Test

F检验用于评估两个总体(A和B)的方差是否相等。
F-Test: Compare Two Variances in R.

> var.test(len ~ supp, data = my_data)

    F test to compare two variances

data:  len by supp
F = 0.6386, num df = 29, denom df = 29, p-value = 0.2331
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.3039488 1.3416857
sample estimates:
ratio of variances 
         0.6385951 

(二) 比较方差的统计检验 Homogeneity of variances

有许多检验可以检测不同组之间方差的均等性(均一性),包括:

  • F-test: Compare the variances of two samples. The data must be normally distributed.
  • Bartlett’s test: Compare the variances of k samples, where k can be more than two samples. The data must be normally distributed. The Levene test is an alternative to the Bartlett test that is less sensitive to departures from normality.
  • Levene’s test: Compare the variances of k samples, where k can be more than two samples. It’s an alternative to the Bartlett’s test that is less sensitive to departures from normality.
  • Fligner-Killeen test: a non-parametric test which is very robust against departures from normality.

Bartlett’s test用于测试k个样本中方差的均匀性,其中k可以大于2。 适用于正态分布的数据。 当数据分布为非正态分布时,下一部分将描述的Levene检验是Bartlett检验的更稳健的替代方案。

2.1 Compute Bartlett’s test in R
# Bartlett’s test with one independent variable:
> bartlett.test(weight ~ group, data = PlantGrowth)

    Bartlett test of homogeneity of variances

data:  weight by group
Bartlett's K-squared = 2.8786, df = 2, p-value = 0.2371

# Bartlett’s test with multiple independent variables: 
> bartlett.test(len ~ interaction(supp,dose), data=ToothGrowth)

    Bartlett test of homogeneity of variances

data:  len by interaction(supp, dose)
Bartlett's K-squared = 6.9273, df = 5, p-value = 0.2261
2.2 Compute Levene’s test in R
library(car)
> # Levene's test with one independent variable
> leveneTest(weight ~ group, data = PlantGrowth)
Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  2  1.1192 0.3412
      27               
> # Levene's test with multiple independent variables
> leveneTest(len ~ supp*dose, data = ToothGrowth)
Levene's Test for Homogeneity of Variance (center = median)
      Df F value Pr(>F)
group  5  1.7086 0.1484
      54               
2.3 Compute Fligner-Killeen test in R
> fligner.test(weight ~ group, data = PlantGrowth)

    Fligner-Killeen test of homogeneity of variances

data:  weight by group
Fligner-Killeen:med chi-squared = 2.3499, df = 2, p-value = 0.3088

参考资料:

  1. Comparing Variances in R
  2. 假设检验-方差齐性检验
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,875评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,569评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,475评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,459评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,537评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,563评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,580评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,326评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,773评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,086评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,252评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,921评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,566评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,190评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,435评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,129评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,125评论 2 352

推荐阅读更多精彩内容

  • 文章作者:Tyan博客:noahsnail.com | CSDN | 简书 声明:作者翻译论文仅为学习,如有侵权请...
    SnailTyan阅读 2,420评论 0 5
  • 定义及分类 在进行 t 检验之前让我们先看看它的定义:t 检验法就是在假设检验时利用 t 分布进行概率计算的检验方...
    研究僧小蓝哥阅读 26,439评论 1 13
  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 9,451评论 0 13
  • 好久没来简书了,真有点对不起我的这十几个粉丝,因为最近我都要抖音上活动,所以忘了这里,更忘了要拍过程图,所以...
    唐小妞的水彩阅读 223评论 0 3
  • 在生命历程中,平凡的一天,也是我余生中,最宝贵的一天,最美丽的一天。慵懒的睡个自然醒。八点多起床洗漱,喝水,吃...
    田辉_852a阅读 319评论 0 0