致知 2019-10-06
一起为你的基因找个朋友吧~
上一次学习WGCNA还是7月份做小组作业的时候,本来想做WGCNA,但是当时各方面没有入门,理解不了这个是个啥东西,最后我一个废柴带着另外好几个废柴用jimmy大神的代码做了差异分析。正好前两天生信技能树的公众又重新发了WGNA的文章,就趁着国庆有空好好看一下吧~
另外给协和的小伙伴的推荐每年下半年开课的高级统计学(姜老师真的女神范儿,讲课逻辑极其清楚而且超级有气质~以下省略3000彩虹屁)还有李娇老师开的数据挖掘(内容比较泛,全面的介绍了可以用R做的的各种事情,不可能上完课就掌握,但用来入门R是极好的)。ps高级统计学很晦涩,可以配合statquest食用,听不进去很痛苦,听进去就还挺有意思,不过,听不懂去看看姜女神的风采也是好的,闲着也是闲着不是吗?
废话扯了好多,一起跟着Horvath和jimmy的work flow来学习吧~
WGCNA 是用来做什么的呢?
Hovath的文章里完整的介绍了WGCNA的分析全部过程。(DOI: 10.2202/1544-6115.1128)。我知道你不会看的,别担心jimmy大神的教程里有中文名词解释。假设你像我一样,第一次看没有看懂,那么我们就一起来玩一个找朋友的游戏吧。
假设现在有医学院的大一新生1000名(super huge的医学院)我们想快速的对他们有一个大致的了解,但又没有精力一名一名的了解,我们就希望能把他们分成具有共同性质的几拨。我们用什么分类呢?身高?性别?宗教信仰?你对香港问题的看法?其实都可以,这里我们用籍贯(因为想起了新生尬聊第一句话一般都是你家是哪的呀?)。假设你是辅导员,你大喊:来,咱们一起来玩找朋友!来自同一个省的请快速聚到一起。经过一阵骚动,分成了34堆。不够细致,你接着喊:请同一个省中来自同一个市的聚到一起。经过一阵骚动,34堆中每个又分出了x堆。你希望更加细致一点,你喊,同一个市中来自同一个县的聚到一起。x堆中又分出了y堆。你很满意,但是,你为了节省你的工作量,你希望每堆里面有一个代表,帮你汇报这一堆的情况,你接着喊:请每一组同学推选一个交际能力最强的同学当代表。又经过一阵骚动,你有了34xy个堆,和34xy个代表。
为什么要玩一个这么无聊的游戏呢?因为WGCNA分析就是一个这样的找朋友(层次聚类)的过程啊。你有A个样本,做了测序或者芯片分析,每个样本测到了n个基因,你希望了解这些基因中那些是对你的研究是有价值的,但是又不可能一个一个分析,有人就想到了,那就让这些基因玩一个找朋友的游戏吧。基因没有籍贯,我们通过什么让它们找朋友呢?Ravasz这个大哥说我们就用topological overlap dissimilarity measure这种方法吧(看不懂没关系,我也不懂,你不需要了解它,只知道它是一种很牛逼的并且具有生物学意义的统计学方法吧)。经过了这种牛逼方法的筛选后,我们依据临近值(adjacency)让基因找到了朋友,分成了i堆,你就的到了表达模式(expression profile)一致的一堆基因(genes with coherent expression profile),这就是你的module(模块)。你可以调整你的参数,得到或大或小的module(按省分,按市份,按省分)。然后,你还可以再你的每一个module里面挑选几个起到核心做的的基因(交际能力最好的代表),你就得到了你的hub基因。
看,经过一个简单的类比,那些拗口的专业词汇,是不是也不是那么难理解了呢?
来几个名词解释吧
Weight(权重) 基因之间不仅仅是相关与否,还记录着它们的相关性数值,数值就是基因之间的联系的权重(相关性)。
模块(module):表达模式相似的基因分为一类,这样的一类基因成为模块;
Eigengene(eigen + gene):基因和样本构成的矩阵,
Adjacency Matrix(邻近矩阵):是图的一种存储形式,用一个一维数组存放图中所有顶点数据;用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵;在WGCNA分析里面指的是基因与基因之间的相关性系数矩阵。 如果用了阈值来判断基因相关与否,那么这个邻近矩阵就是0/1矩阵,只记录基因相关与否。但是WGCNA没有用阈值来卡基因的相关性,而是记录了所有基因之间的相关性。
Topological Overlap Matrix (TOM)WGNA认为基因之间的简单的相关性不足以计算共表达,所以它利用上面的邻近矩阵,又计算了一个新的邻近矩阵。一般来说,TOM就是WGCNA分析的最终结果,后续的只是对TOM的下游注释。
-----from jimmy's github
我第一次试图学习WGCNA的时候,因为啥都不懂,只知道差异基因,当时找了好久,都没有样本的分组信息,然后整个人就很方,脑子里只有一个想法,怎么分组呢?怎么没有对照组呢?现在想想,蠢的的可爱呀~