K重交叉验证 和 网格搜索验证

本文介绍Keras一些常见的验证和调参技巧,快速地验证模型和调节超参。

小技巧:

  • CSV数据文件加载
  • Dense初始化警告

验证与调参:

  • 模型验证(Validation)
  • K重交叉验证(K-fold Cross-Validation)
  • 网格搜索验证(Grid Search Cross-Validation)

欢迎Follow我的GitHubhttps://github.com/SpikeKing

Keras

CSV数据文件加载

使用NumPy的 loadtxt() 方法加载CSV数据文件

  • delimiter:数据单元的分割符;
  • skiprows:略过首行标题;
dataset = np.loadtxt(raw_path, delimiter=',', skiprows=1)

Dense初始化警告

Dense初始化参数的警告:

UserWarning: Update your `Dense` call to the Keras 2 API
`Dense(units=12, activation="relu", kernel_initializer="uniform")`
output = Dense(units=12, init='uniform', activation='relu')(main_input)

将init参数替换为kernel_initializer参数即可。


模型验证

fit()自动划分验证集:

通过设置参数validation_split的值(0~1)确定验证集的比例。

实现:

history = self.model.fit(
    self.data[0], self.data[1],
    epochs=self.config.num_epochs,
    verbose=1,
    batch_size=self.config.batch_size,
    validation_split=0.33,
)

fit()手动划分验证集:

train_test_split来源sklearn.model_selection:

  • test_size:验证集的比例;
  • random_state:随机数的种子;

通过参数validation_data添加验证数据,格式是 数据+标签 的元组。

实现:

X_train, X_test, y_train, y_test = \
    train_test_split(self.data[0], self.data[1], test_size=0.33, random_state=47)

history = self.model.fit(
    X_train, y_train,
    validation_data=(X_test, y_test),
    epochs=self.config.num_epochs,
    batch_size=self.config.batch_size,
    verbose=1,
)

交叉验证

K重交叉验证(K-fold Cross-Validation)是常见的模型评估统计。

人工模式

交叉验证函数 StratifiedKFold() 来源于sklearn.model_selection:

  • n_splits:交叉的重数,即N重交叉验证;
  • shuffle:数据和标签是否随机洗牌;
  • random_state:随机数种子;
  • skf.split(X, y):划分数据和标签的索引。

cvscores用于统计K重交叉验证的结果,计算均值和方差。

实现:

X = self.data[0]  # 数据
y = self.data[1]  # 标签
skf = StratifiedKFold(n_splits=10, shuffle=True, random_state=47)
cvscores = []  # 交叉验证结果
for train_index, test_index in skf.split(X, y):  # 索引值
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]

    history = self.model.fit(
        X_train, y_train,
        epochs=self.config.num_epochs,
        batch_size=self.config.batch_size,
        verbose=0,
    )
    self.loss.extend(history.history['loss'])
    self.acc.extend(history.history['acc'])

    # scores的第一维是loss,第二维是acc
    scores = self.model.evaluate(X_test, y_test)
    print('[INFO] %s: %.2f%%' % (self.model.metrics_names[1], scores[1] * 100))
    cvscores.append(scores[1] * 100)
cvscores = np.asarray(cvscores)
print('[INFO] %.2f%% (+/- %.2f%%)' % (np.mean(cvscores), np.std(cvscores)))

输出:

[INFO] acc: 79.22%
[INFO] acc: 70.13%
[INFO] acc: 75.32%
[INFO] acc: 75.32%
[INFO] acc: 80.52%
[INFO] acc: 81.82%
[INFO] acc: 75.32%
[INFO] acc: 85.71%
[INFO] acc: 75.00%
[INFO] acc: 76.32%
[INFO] 77.47% (+/- 4.18%)

Wrapper模式

通过 cross_val_score() 函数集成模型和交叉验证逻辑。

  • 将模型封装成wrapper,注意使用内置函数,而调用,没有括号()
  • epochs即轮次,batch_size即批次数;
  • StratifiedKFold是K重交叉验证的逻辑;

cross_val_score的输入是模型wrapper、数据X、标签Y、交叉验证cv;输出是每次验证的结果,再计算均值和方差。

实现:

X = self.data[0]  # 数据
Y = self.data[1]  # 标签

model_wrapper = KerasClassifier(
    build_fn=create_model,
    epochs=self.config.num_epochs,
    batch_size=self.config.batch_size,
    verbose=0
)  # keras wrapper

kfold = StratifiedKFold(n_splits=10, shuffle=True, random_state=47)
results = cross_val_score(model_wrapper, X, Y, cv=kfold)
print('[INFO] %.2f%% (+/- %.2f%%)' % (np.mean(results) * 100.0, np.std(results) * 100.0))

输出:

[INFO] 74.74% (+/- 4.37%)

网格搜索验证

网格搜索验证(Grid Search Cross-Validation)用于选择模型的最优超参值。

交叉验证函数 GridSearchCV() 来源于sklearn.model_selection:

  • 设置超参列表,如optimizers、init_modes、epochs、batches;
  • 创建参数字典,key值是模型的参数,或者wrapper的参数;
  • estimator是模型,param_grid是网格参数字典,n_jobs是进程数;
  • 输出最优结果和其他排列组合结果。

实现:

X = self.data[0]  # 数据
Y = self.data[1]  # 标签

model_wrapper = KerasClassifier(
    build_fn=create_model,
    verbose=0
)  # 模型

optimizers = ['rmsprop', 'adam']  # 优化器
init_modes = ['glorot_uniform', 'normal', 'uniform']  # 初始化模式
epochs = np.array([50, 100, 150])  # Epoch数
batches = np.array([5, 10, 20])  # 批次数

# 网格字典optimizer和init_mode是模型的参数,epochs和batch_size是wrapper的参数
param_grid = dict(optimizer=optimizers, epochs=epochs, batch_size=batches, init_mode=init_modes)
grid = GridSearchCV(estimator=model_wrapper, param_grid=param_grid, n_jobs=4)
grid_result = grid.fit(X, Y)

print('[INFO] Best: %f using %s' % (grid_result.best_score_, grid_result.best_params_))

for params, mean_score, scores in grid_result.grid_scores_:
    print('[INFO] %f (%f) with %r' % (scores.mean(), scores.std(), params))

输出:

[INFO] Best: 0.721354 using {'epochs': 100, 'init_mode': 'uniform', 'optimizer': 'adam', 'batch_size': 20}
[INFO] 0.697917 (0.025976) with {'epochs': 50, 'init_mode': 'normal', 'optimizer': 'rmsprop', 'batch_size': 10}
[INFO] 0.700521 (0.006639) with {'epochs': 50, 'init_mode': 'normal', 'optimizer': 'adam', 'batch_size': 10}
[INFO] 0.697917 (0.018414) with {'epochs': 50, 'init_mode': 'uniform', 'optimizer': 'rmsprop', 'batch_size': 10}
[INFO] 0.701823 (0.030314) with {'epochs': 50, 'init_mode': 'uniform', 'optimizer': 'adam', 'batch_size': 10}
[INFO] 0.632813 (0.059069) with {'epochs': 100, 'init_mode': 'normal', 'optimizer': 'rmsprop', 'batch_size': 10}
...

欢迎Follow我的GitHubhttps://github.com/SpikeKing

By C. L. Wang

OK, that's all! Enjoy it!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容