02 - 判断模型效果是否好

计算判断的accuracy

admissions = admissions.rename(columns={'admit':'actual_label'})
# 寻找相等的matches, matches返回的是true or false
matches = admissions["predicted_label"] == admissions["actual_label"]
# 得到matches为true的predictions
correct_predictions = admissions[matches]
print (correct_predictions.head(5))
accuracy = len(correct_predictions)/len(admissions)
print (accuracy)

计算sensitivity = true positives / (tp + fn)

# From the previous screen
true_positive_filter = (admissions["predicted_label"] == 1) & (admissions["actual_label"] == 1)
true_positives = len(admissions[true_positive_filter])

false_negative_filter = (admissions["predicted_label"] == 0) & (admissions["actual_label"] == 1)
false_negatives = len(admissions[false_negative_filter])
sensitivity = true_positives / (true_positives + false_negatives)

print (sensitivity)

计算specificity = true negatives / (tn + fp)

# From previous screens
true_negative_filter = (admissions["predicted_label"] == 0) & (admissions["actual_label"] == 0)
true_negatives = len(admissions[true_negative_filter])
false_positive_filter = (admissions["predicted_label"] == 1) & (admissions["actual_label"] == 0)
false_positives = len(admissions[false_positive_filter])
specificity = (true_negatives) / (false_positives + true_negatives)
print(specificity)

Cross-validation
通过np.random.permutation将data frame的index打乱,随机选择一部分作为test和train。

import numpy as np
np.random.seed(8)

admissions = pd.read_csv("admissions.csv")
admissions["actual_label"] = admissions["admit"]
admissions = admissions.drop("admit", axis=1)

shuffled_index = np.random.permutation(admissions.index)
shuffled_admissions = admissions.loc[shuffled_index]

train = shuffled_admissions.iloc[0:515]
test = shuffled_admissions.iloc[515:len(shuffled_admissions)]
print(shuffled_admissions.head())

Use train set to fit model, then use test set to calculate accuracy

import numpy as np
np.random.seed(8)

shuffled_index = np.random.permutation(admissions.index)
shuffled_admissions = admissions.loc[shuffled_index]
train = shuffled_admissions.iloc[0:515]
test = shuffled_admissions.iloc[515:len(shuffled_admissions)]
model = LogisticRegression()
model.fit(train[["gpa"]], train["actual_label"])

# return predicted result to labels, then set test["predicted_labels"] to labels
labels = model.predict(test[["gpa"]])
test["predicted_label"] = labels

matches = test["predicted_label"] == test["actual_label"]
correct_predictions = test[matches]
accuracy = len(correct_predictions) / len(test)
print(accuracy)

计算ROC

import matplotlib.pyplot as plt
from sklearn import metrics

probabilities = model.predict_proba(test[["gpa"]])
fpr, tpr, thresholds = metrics.roc_curve(test["actual_label"], probabilities[:,1])
plt.plot(fpr, tpr)
print (probabilities)
#这里的probabilities有两列,第一列是预测返回值是0的概率(not admit),第二列是预测返回值是1的概率(admit)
#在metrics.roc_curve里面,采用的probabilities[:,1],即使选择第二列返回值是1的概率

#如果只需要返回值是1的概率
logistic_model.predict_proba(data)[:,1]

计算AUC score

# Note the different import style!
from sklearn.metrics import roc_auc_score
auc_score = roc_auc_score(test["actual_label"], probabilities[:,1])
print (auc_score)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容