动态规划

先给出别人的总结😁:

递归到动规的一般转化方法

递归函数有n个参数,就定义一个n维的数组,数组的下标是递归函数参数的取值范围,数组元素的值是递归函数的返回值,这样就可以从边界值开始, 逐步填充数组,相当于计算递归函数值的逆过程。

动规解题的一般思路

1. 将原问题分解为子问题

把原问题分解为若干个子问题,子问题和原问题形式相同或类似,只不过规模变小了。子问题都解决,原问题即解决(数字三角形例)。子问题的解一旦求出就会被保存,所以每个子问题只需求 解一次。

2.确定状态

在用动态规划解题时,我们往往将和子问题相关的各个变量的一组取值,称之为一个“状 态”。一个“状态”对应于一个或多个子问题, 所谓某个“状态”下的“值”,就是这个“状 态”所对应的子问题的解。

所有“状态”的集合,构成问题的“状态空间”。“状态空间”的大小,与用动态规划解决问题的时间复杂度直接相关。 在数字三角形的例子里,一共有N×(N+1)/2个数字,所以这个问题的状态空间里一共就有N×(N+1)/2个状态。

整个问题的时间复杂度是状态数目乘以计算每个状态所需时间。在数字三角形里每个“状态”只需要经过一次,且在每个状态上作计算所花的时间都是和N无关的常数。

3.确定一些初始状态(边界状态)的值

以“数字三角形”为例,初始状态就是底边数字,值就是底边数字值。

4. 确定状态转移方程

定义出什么是“状态”,以及在该“状态”下的“值”后,就要找出不同的状态之间如何迁移――即如何从一个或多个“值”已知的 “状态”,求出另一个“状态”的“值”(递推型)。状态的迁移可以用递推公式表示,此递推公式也可被称作“状态转移方程”。

能用动规解决的问题的特点

1) 问题具有最优子结构性质。如果问题的最优解所包含的 子问题的解也是最优的,我们就称该问题具有最优子结 构性质。

2) 无后效性。当前的若干个状态值一旦确定,则此后过程的演变就只和这若干个状态的值有关,和之前是采取哪种手段或经过哪条路径演变到当前的这若干个状态,没有关系。

上面的文字出于这位大神

另外给出oc代码传送门,但是总感觉如果用c写的话更加简便。

这次算法给我的经验就是:遇到算法问题,先想想解决问题的数学方法,不要急着写代码,可以用草稿本先写写,如果确定是可以实现的时候,再去用代码实现。如果代码实现了,再看看是不是有更优的解决方案,或者自己的代码是不是有可以优化的地方。争取做到最好!动态规划 我还会继续下去,看看中篇,高级篇,路漫漫其修远兮,看来我要一步一步的爬,没办法天生没有“脚”。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • 树形动态规划,顾名思义就是树+DP,先分别回顾一下基本内容吧:动态规划:问题可以分解成若干相互联系的阶段,在每一个...
    Mr_chong阅读 1,522评论 0 2
  • 动态规划(Dynamic Programming) 本文包括: 动态规划定义 状态转移方程 动态规划算法步骤 最长...
    廖少少阅读 3,353评论 0 18
  • 从递归转换到动态规划 如果一个递归函数有n个参数,那就定义一个n维数组,数组的下标就是递归函数的取值范围,数组元素...
    qratosone阅读 469评论 0 0
  • 本文翻译自TopCoder上的一篇文章: Dynamic Programming: From novice to ...
    扎Zn了老Fe阅读 1,949评论 0 3
  • 分治方法 将问题划分成互不相交的子问题 递归地求解子问题 将子问题的解组合起来 动态规划(两个要素:最优子结构、子...
    superlj666阅读 537评论 0 0