数组 & 链表 的底层存储结构
链表本身没有大小的限制,天然地支持动态扩容,我觉得这也是它与数组最大的区别。
三种最常见的链表结构
- 单链表
与数组一样,链表也支持数据的查找、插入和删除操作,但是针对链表的插入和删除操作,我们只需要考虑相邻结点的指针改变,所以对应的时间复杂度是 O(1)。
但是,有利就有弊。链表要想随机访问第 k 个元素,就没有数组那么高效了。需要根据指针一个结点一个结点地依次遍历,直到找到相应的结点,O(n) 的时间复杂度。
- 循环链表
循环链表是一种特殊的单链表。它跟单链表唯一的区别就在尾结点。
和单链表相比,循环链表的优点是从链尾到链头比较方便。当要处理的数据具有环型结构特点时,就特别适合采用循环链表。比如著名的的约瑟夫问题。
- 双向链表
双向链表需要额外的两个空间来存储后继结点和前驱结点的地址。所以,如果存储同样多的数据,双向链表要比单链表占用更多的内存空间。虽然两个指针比较浪费存储空间,但可以支持双向遍历,这样也带来了双向链表操作的灵活性。
那相比单链表,双向链表适合解决哪种问题呢?
双向链表可以支持 O(1) 时间复杂度的情况下找到前驱结点,正是这样的特点,也使双向链表在某些情况下的插入、删除等操作都要比单链表简单、高效。
除了插入、删除操作有优势之外,对于一个有序链表,双向链表的按值查询的效率也要比单链表高一些。因为,我们可以记录上次查找的位置 p,每次查询时,根据要查找的值与 p 的大小关系,决定是往前还是往后查找,所以平均只需要查找一半的数据。
这就是为什么在实际的软件开发中,双向链表尽管比较费内存,但还是比单链表的应用更加广泛的原因。LinkedHashMap 容器中就用到了双向链表这种数据结构。
实际上,这是用空间换时间的设计思想。当内存空间充足的时候,如果我们更加追求代码的执行速度,我们就可以选择空间复杂度相对较高、但时间复杂度相对很低的算法或者数据结构。相反,如果内存比较紧缺,比如代码跑在手机或者单片机上,这个时候,就要反过来用时间换空间的设计思路。
循环链表和双向链表整合在一起就是一个新的版本:双向循环链表。
链表 VS 数组性能大比拼
- 时间复杂度
因为内存存储的区别,它们插入、删除、随机访问操作的时间复杂度正好相反。
不过,数组和链表的对比,并不能局限于时间复杂度。而且,在实际的软件开发中,不能仅仅利用复杂度分析就决定使用哪个数据结构来存储数据。
- 是否可以有效预读
数组简单易用,在实现上使用的是连续的内存空间,可以借助 CPU 的缓存机制,预读数组中的数据,所以访问效率更高。而链表在内存中并不是连续存储,所以对 CPU 缓存不友好,没办法有效预读。
- 内存大小是否固定
数组的缺点是大小固定,一经声明就要占用整块连续内存空间。如果声明的数组过大,系统可能没有足够的连续内存空间分配给它,导致“内存不足(out of memory)”。如果声明的数组过小,则可能出现不够用的情况。这时只能再申请一个更大的内存空间,把原数组拷贝进去,非常费时。链表本身没有大小的限制,天然地支持动态扩容,我觉得这也是它与数组最大的区别。Java 中的 ArrayList 容器虽然支持动态扩容,但数据拷贝的操作也是非常耗时的。
- 其他
如果你的代码对内存的使用非常苛刻,那数组就更适合你。而且,对链表进行频繁的插入、删除操作,还会导致频繁的内存申请和释放,容易造成内存碎片,如果是 Java 语言,就有可能会导致频繁的GC(Garbage Collection,垃圾回收)。
所以,在我们实际的开发中,针对不同类型的项目,要根据具体情况,权衡究竟是选择数组还是链表。
标题解答
如何实现LRU缓存淘汰算法?
缓存是一种提高数据读取性能的技术,在硬件设计、软件开发中都有着非常广泛的应用,比如常见的 CPU 缓存、数据库缓存、浏览器缓存等等。
缓存的大小有限,当缓存被用满时,哪些数据应该被清理出去,哪些数据应该被保留?这就需要缓存淘汰策略来决定。
常见的策略有三种:
- 先进先出策略 FIFO(First In,First Out)
- 最少使用策略 LFU(Least Frequently Used)
- 最近最少使用策略 LRU(Least Recently Used)
我的思路是这样的:我们维护一个有序单链表,越靠近链表尾部的结点是越早之前访问的。当有一个新的数据被访问时,我们从链表头开始顺序遍历链表。
- 如果此数据之前已经被缓存在链表中了,我我们遍历得到这个数据对应的结点,并将其从原来的位置删除,然后再插入到链表的头部。
- 如果此数据没有在缓存链表中,又可以分为两种情况:
- 如果此时缓存未满,则将此结点直接插入到链表的头部;
- 如果此时缓存已满,则链表尾结点删除,将新的数据结点插入链表的头部。
这样我们就用链表实现了一个 LRU 缓存。缓存访问的时间复杂度为 O(n)。实际上,我们可以继续优化这个实现思路,比如引入散列表(Hash table)来记录每个数据的位置,将缓存访问的时间复杂度降到 O(1)。
课后思考
如果字符串是通过单链表来存储的,那该如何来判断是一个回文串呢?你有什么好的解决思路呢?相应的时间空间复杂度又是多少呢?
思路:(by andavid)
使用快慢两个指针找到链表中点,慢指针每次前进一步,快指针每次前进两步。在慢指针前进的过程中,同时修改其 next 指针,使得链表前半部分反序。最后比较中点两侧的链表是否相等。O(n) time and O(1) space。
/** LeetCode 234
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isPalindrome(ListNode head) {
if (head == null || head.next == null) {
return true;
}
ListNode prev = null;
ListNode slow = head;
ListNode fast = head;
while (fast != null && fast.next != null) {
fast = fast.next.next;
ListNode next = slow.next;
slow.next = prev;
prev = slow;
slow = next;
}
if (fast != null) {
slow = slow.next;
}
while (slow != null) {
if (slow.val != prev.val) {
return false;
}
slow = slow.next;
prev = prev.next;
}
return true;
}
}