例题目录
- 1、反转链表【简单】
- 反转链表II【中等】
- 重排链表【中等】
- 2、排序链表【中等】
- 3、复制带随机指针的链表【中等】
- 4、二叉树与双向链表【中等】
- 有序链表转换二叉搜索树
例题
1、leetcode 206. 反转链表
1.1 题目描述:
反转一个单链表。
1.2 算法
- 方法一 迭代
从前往后移动每个节点
public class Solution {
// 方法一 从前往后移动每个节点
public ListNode reverseList(ListNode head) {
ListNode dummy = new ListNode(-1);
dummy.next = head;
while (head != null && head.next != null) {
ListNode tmp = head.next;
ListNode next = dummy.next;
dummy.next = tmp;
head.next = tmp.next;
tmp.next = next;
}
return dummy.next;
}
}
- 方法二 递归
1 -> 2 -> 3 -> 4
1 -> 2 3 <- 4
1 2 <- 3 <- 4
1 <- 2 <- 3 <- 4
public class Solution {
public ListNode reverseList(ListNode head) {
if (head == null || head.next == null) return head;
ListNode p = reverseList(head.next);
head.next.next = head;
head.next = null;
return p;
}
}
- 方法三 双指针修改指向关系
从前往后遍历每个节点,然后修改每个节点的指向关系
public class Solution {
public ListNode reverseList(ListNode head) {
if (head == null) return null;
ListNode pre = null, cur = head;
ListNode tmp;
while (cur != null) {
tmp = cur;
cur = cur.next;
tmp.next = pre;
pre = tmp;
}
return pre;
}
}
1.3 进阶
-
92. 反转链表 II
反转从位置 m 到 n 的链表。请使用一趟扫描完成反转。
使用类似于方法一
public class Solution {
public ListNode reverseBetween(ListNode head, int m, int n) {
int idx = 0;
ListNode dummy = new ListNode(-1);
ListNode cur = dummy;
cur.next = head;
while (head != null && head.next != null) {
idx++;
if (idx < m) {
dummy = dummy.next;
head = head.next;
} else if (idx >= m && idx < n) {
ListNode tmp = head.next;
ListNode next = dummy.next;
dummy.next = tmp;
head.next = tmp.next;
tmp.next = next;
} else break;
}
return cur.next;
}
}
-
143. 重排链表
给定一个单链表 L:L0→L1→…→Ln-1→Ln ,
将其重新排列后变为: L0→Ln→L1→Ln-1→L2→Ln-2→…
步骤:1. 找到链表中点;2. 翻转后半部分;3. 重组
空间复杂度要求O(1)
class Solution {
// 先找到中点,然后翻转后半段,再拼装。
public void reorderList(ListNode head) {
if (head == null || head.next == null) return;
ListNode slow = head, fast = head;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
ListNode secondHead = reverse(slow.next);
slow.next = null;
while (secondHead != null) {
ListNode t = head.next;
head.next = secondHead;
secondHead = secondHead.next;
head.next.next = t;
head = t;
}
}
private ListNode reverse(ListNode head) {
if (head == null || head.next == null) return head;
ListNode root = reverse(head.next);
head.next.next = head;
head.next = null;
return root;
}
}
2、leetcode 148. 排序链表
2.1 题目描述:
在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序。
2.2 算法
归并排序思想
- 方法一 递归
由于递归需要调用栈,因此不满足空间时间复杂度的要求。
public class Solution {
public ListNode sortList(ListNode head) {
if (head == null || head.next == null) return head;
ListNode slow = head, fast = head;
while (fast.next != null && fast.next.next != null) {
slow = slow.next;
fast = fast.next.next;
}
ListNode tmp = slow.next;
slow.next = null;
ListNode left = sortList(head);
ListNode right = sortList(tmp);
return mergeSort(left, right);
}
private ListNode mergeSort(ListNode left, ListNode right) {
ListNode dummy = new ListNode(-1);
ListNode cur = dummy;
while (left != null && right != null) {
if (left.val < right.val) {
cur.next = left;
left = left.next;
} else {
cur.next = right;
right = right.next;
}
cur = cur.next;
}
cur.next = left == null ? right : left;
return dummy.next;
}
}
- 方法二 迭代
自底向上
step=1: (3->4)->(1->7)->(8->9)->(2->11)->(5->6)
step=2: (1->3->4->7)->(2->8->9->11)->(5->6)
step=4: (1->2->3->4->7->8->9->11)->5->6
step=8: (1->2->3->4->5->6->7->8->9->11)
空间 O(1)
public class Solution {
public ListNode sortList(ListNode head) {
ListNode dummy = new ListNode(-1);
dummy.next = head;
// 统计链表长度
int n = 0;
ListNode p = head;
while (p != null) {
p = p.next;
++n;
}
// 控制step一组
for (int step = 1; step < n; step <<= 1) {
// 一次完了归置cur和tail
ListNode cur = dummy.next;
ListNode tail = dummy;
while (cur != null) {
ListNode left = cur;
ListNode right = cut(cur, step);
cur = cut(right, step);
tail.next = merge(left, right);
while (tail.next != null) tail = tail.next; // 保持 tail 为尾部
}
}
return dummy.next;
}
// 切除前n个节点,返回后半部分的头节点
private ListNode cut(ListNode node, int step) {
for (int i = 0; i < step - 1 && node != null; i++) {
node = node.next;
}
if (node == null) return null;
ListNode p = node.next;
node.next = null;
return p;
}
// 双路归并
private ListNode merge(ListNode left, ListNode right) {
ListNode dummy = new ListNode(-1);
ListNode cur = dummy;
while (left != null && right != null) {
if (left.val < right.val) {
cur.next = left;
left = left.next;
} else {
cur.next = right;
right = right.next;
}
cur = cur.next;
}
cur.next = left != null ? left : right;
return dummy.next;
}
}
2.3 进阶
-
147. 对链表进行插入排序
指定插入排序
class Solution {
public ListNode insertionSortList(ListNode head) {
if (head == null || head.next == null) return head;
ListNode dummy = new ListNode(Integer.MIN_VALUE);
dummy.next = head;
int max = head.val;
ListNode cur = head.next;
ListNode tail = head; // 重要:记录前面有序部分的末尾节点
while (cur != null) {
if (cur.val >= max) {
max = cur.val;
cur = cur.next;
tail = tail.next;
} else {
ListNode p = dummy;
while (p.next.val <= cur.val) {
p = p.next;
}
ListNode t = p.next;
p.next = cur;
cur = cur.next;
p.next.next = t;
tail.next = cur;
}
}
return dummy.next;
}
}
3、leetcode 138. 复制带随机指针的链表
3.1 题目描述:
给定一个链表,每个节点包含一个额外增加的随机指针,该指针可以指向链表中的任何节点或空节点。
要求返回这个链表的 深拷贝。
3.2 算法
- 方法一 DFS
解题的关键在于用一个map记录已经复制过的节点,key原节点,value为复制后节点。每当new一个新节点时就往map中put。
public class Solution {
// 方法一 DFS
Map<Node, Node> visited;
public Node copyRandomList(Node head) {
visited = new HashMap<>();
return dfs(head);
}
private Node dfs(Node node) {
if (node == null) return null;
if (visited.containsKey(node)) return visited.get(node);
Node nodeCopy = new Node(node.val);
visited.put(node, nodeCopy);
nodeCopy.next = dfs(node.next);
nodeCopy.random = dfs(node.random);
return nodeCopy;
}
}
- 方法二 BFS
用一个队列保存以及复制过的节点,同时map记录复制过的节点,出队的节点检查next节点和random节点,当还没复制,就复制一份并加入队列。直到队列为空。
public class Solution {
// 方法二 BFS
public Node copyRandomList(Node head) {
if (head == null) return null;
Queue<Node> queue = new LinkedList<>();
Map<Node, Node> visited = new HashMap<>();
Node headCopy = new Node(head.val);
visited.put(head, headCopy);
queue.add(head);
while (!queue.isEmpty()) {
Node node = queue.poll();
if (node.next != null && !visited.containsKey(node.next)) {
visited.put(node.next, new Node(node.next.val));
queue.add(node.next);
}
if (node.random != null && !visited.containsKey(node.random)) {
visited.put(node.random, new Node(node.random.val));
queue.add(node.random);
}
visited.get(node).next = visited.get(node.next);
visited.get(node).random = visited.get(node.random);
}
return headCopy;
}
}
- 方法三 迭代
创建dummy节点,按顺序遍历节点饼复制,同时检查next节点和random节点,如还未复制则复制。复制记录保存在map visited中。
public class Solution {
// 方法三 迭代
Map<Node, Node> visited;
public Node copyRandomList(Node head) {
if (head == null) return null;
visited = new HashMap<>();
Node dummy = new Node(-1);
Node first = dummy;
while (head != null) {
dummy.next = copyNode(head);
dummy = dummy.next;
dummy.next = (head.next != null) ? copyNode(head.next) : null;
dummy.random = (head.random != null) ? copyNode(head.random) : null;
head = head.next;
}
return first.next;
}
private Node copyNode(Node node) {
if (visited.containsKey(node)) return visited.get(node);
Node nodeNew = new Node(node.val);
visited.put(node, nodeNew);
return nodeNew;
}
}
- 方法四 优化后的迭代
方法三中的迭代需要用到visited记录复制过的节点,占用了O(n)的空间。一个比较trick的方法是把每个复制后的节点连在原节点之后,后面再断开连接,就避免的使用map来记录复制过的节点。
步骤:1.复制节点 2.复制随机指针 3.断裂
public class Solution {
// 方法四 优化迭代 空间复杂度O(1)
public Node copyRandomList(Node head) {
if (head == null) return null;
// 复制节点
Node cur = head;
while (cur != null) {
Node tmp = new Node(cur.val);
Node next = cur.next;
cur.next = tmp;
tmp.next = next;
cur = next;
}
// 复制随机指针
cur = head;
while (cur != null) {
if (cur.random != null) {
cur.next.random = cur.random.next;
}
cur = cur.next.next;
}
// 断裂
Node dummyNew = new Node(-1);
Node curNew = dummyNew;
cur = head;
while (cur != null) {
curNew.next = cur.next;
curNew = curNew.next;
cur.next = cur.next.next;
cur = cur.next;
}
return dummyNew.next;
}
}
4、剑指 Offer 36. 二叉搜索树与双向链表
4.1 题目描述:
输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的循环双向链表。要求不能创建任何新的节点,只能调整树中节点指针的指向。
4.2 算法
中序遍历,记录前一个节点,对遍历到的节点修改指针的指向。注意首尾节点也要相连。
public class Solution {
public Node treeToDoublyList(Node root) {
if (root == null) return null;
Stack<Node> stack = new Stack<>();
Node pre = null, first = null;
while (!stack.empty() || root != null) {
if (root != null) {
stack.add(root);
root = root.left;
} else {
root = stack.pop();
if (pre == null) {
first = root;
} else {
pre.right = root;
root.left = pre;
}
pre = root;
root = root.right;
}
}
// 连接首尾
first.left = pre;
pre.right = first;
return first;
}
}
4.3 类似题目
class Solution {
public TreeNode sortedListToBST(ListNode head) {
if (head == null) return null;
if (head.next == null) return new TreeNode(head.val);
ListNode pre = null;
ListNode slow = head, fast = head;
while (fast != null && fast.next != null) {
pre = slow;
slow = slow.next;
fast = fast.next.next;
}
pre.next = null;
TreeNode root = new TreeNode(slow.val);
root.left = sortedListToBST(head);
root.right = sortedListToBST(slow.next);
return root;
}
}