kaggle实战之海冰面积序列数据的分析(1):库的载入

本文主要为笔者学习kaggle实战项目“Daily sea ice exten data”时心得笔记,项目主要利用NSIDC提供的每日海冰面积(sea ice extent)数据进行数据分析,学习源代码为Mathew Savage:visualisation of sea-ice data,仅供交流参考。

1.库的载入

1.1warnings库

当程序执行时会有warning发生,但这实际并不影响程序进行,因此可以导入warnings库来忽略。

import warnings
warnings.filterwarnings('ignore')

1.2数据处理相关库

除了numpy和panda,因为该数据为时间序列,因此载入datetime库

import numpy as np
import pandas as pd
import datetime as dt

1.3 绘图相关库

import matplotlib.pyplot as plt
import seaborn as sns
plt.set.use('ggplot')
sns.set_style('white')
%matplotlib inlie

除了载入库外,习惯在开始对绘图风格进行设置。这里plt风格设置为ggplot,而sns的背景设置为纯白色。
%matplotlib inlie 命令可以让图片直接嵌入就jupter notebook,不用重复输入plt.show()

1.4 迭代器

itertools是python自带的标准库,提供了一些生成迭代对象的函数。这里因为要循环绘图各年的情况所以使用了迭代器。
import itertools

常用迭代函数包括count,cycle,repeat产生无限迭代循环对象,使用方法如* itertools.count(1), itertools.cyle('ABC'), itertools.repeat('A',10) ,itertool.chain('ABC','XYZ'),itertool.groupby(‘AAABBBCCAAA’)*
详细用法可见廖雪峰python教程:itertools

 import itertools
 natuals = itertools.count(1)
 for n in natuals:
                         print n

1.5 高级绘图

import matplotlib.dates as mdates
from matplotlib.offsetbox import AnchoredText

因为绘制图形与时间有关,导入matplotlib中加强版时间序列处理工具matplotlib.dates,相关用法在使用时具体说明
matplotlib.offsetbox.AnchoredText 用于在图中增加标注,代码中的使用为

axarr[0].add_artist(AnchoredText('Northern Hemisphere', loc=3))
axarr[1].add_artist(AnchoredText('Southern Hemisphere', loc=2))

其中loc表示标准的位置:

'upper right'  : 1,
'upper left'   : 2,
'lower left'   : 3,
'lower right'  : 4,
'right'        : 5,
'center left'  : 6,
'center right' : 7,
'lower center' : 8,
'upper center' : 9,
'center'       : 10

效果:


图片.png

该部分完整代码

import warnings 
warnings.filterwarnings('ignore')

import numpy as np
import pandas as pd
import datetime as dt

import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('ggplot')
sns.set_style('white')

import itertools
import matplotlib.dates as mdates
from matplotlib.offsetbox import AnchoredText

%matplotlib inline
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容