Sequence to Sequence模型笔记

点击查看原文

背景介绍

Sequence to Sequence模型最早是由google工程师在2014年Sequence to Sequence Learning with Neural Networks论文中提出。

之后广泛应用于机器翻译中,该论文提出了一种新的Encoder-Decoder模型。之后在该模型结构上又发展出Sequence to Sequence with Attention模型也在NLP领域中得到广泛使用。

模型优点

在之前的序列模型中,通常使用RNN结构来对序列进行处理,每个cell使用上一个hidden state来输出对应的hidden state + output,然后使用每个时刻的output或者最后时刻的hidden state来输出结果。这使得模型的输入和输出的比例只能是t:t或者是t:1t表示序列长度。
使用Encoder-Decoder结构能够让输出序列通过Encoder得到一个语义编码,该编码代表了输入序列的语义表示,再使用Decoder对其进行解码,得到的长度由解码器和语义编码决定,这在机器翻译任务中有着天然的优势。

模型结构

论文中的模型结构如图:

seq2seq

该模型读取输入序列“ABC”,得到输出序列“WXYZ”。<EOS>代表输入结束或者停止预测的标识。个人习惯使用<S><E>来代表开始解码和停止解码的标识,更加方便理解。

该模型包含EncoderDecoder两部分。

encoder

用于对输入序列进行编码得到一个语义表示供解码器使用。


encoder cell

encoder通常使用LSTM cell,也有使用CNN的。
这里以LSTM来解释模型的输入输出。
模型以上一时刻的hidden state ht-1和当前时刻的输入Xt作为输入, 得到的outputOt直接舍弃,ht作为下一时刻的输入。h0为初始输入,通常用0代替。

decoder
decoder cell

deocder也是一样,通常用LSTM
模型以上一时刻ct-1yt-1作为输入,直到yt<E>结束。
<S>为初始输入,表示解码器开始解码。

训练阶段

一共有三个输入:

  • encoder_input
    • 原始序列作为输入
  • decoder_input
    • 解码器的输入,训练时将decoder_target往后移一位,第一位是<S>,例如原序列为“ABC”,输出序列为“WXYZ”,那么训练时decoder_input<S>WXYZ
  • decoder_target
    • 原序列的输出序列
预测阶段

一共两个输入:

  • encoder_input
    • 预测序列
  • decoder_input
    • 第一位输入使用<S>,其后使用上一时刻的输出作为输入

实际应用

实际应用中,语义编码可以作为decoder的初始输入也可以是所有decoder的输入。


或者


tips

在论文中有提到,实际应用中,如果将原始序列顺序颠倒后输入,比如原序列为“ABC”,训练时将“CBA”作为输入,效果会有提升,但是具体原因,原作者也不知道,这就是深度学习magic的地方。

上面我只讲了单层的模型,也可以使用多层模型来做,结构大致一样。后续还会写Sequence to Sequence with Attention的模型结构。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容