Flink Job执行报错Too many open files问题排查
最近部署flink job的时候遇到报错。
java.lang.IllegalStateException: org.apache.http.nio.reactor.IOReactorException: Failure opening selector
at org.apache.http.impl.nio.client.IOReactorUtils.create(IOReactorUtils.java:43)
at org.apache.http.impl.nio.client.HttpAsyncClientBuilder.build(HttpAsyncClientBuilder.java:603)
at org.elasticsearch.client.RestClientBuilder$2.run(RestClientBuilder.java:241)
at org.elasticsearch.client.RestClientBuilder$2.run(RestClientBuilder.java:238)
at java.security.AccessController.doPrivileged(Native Method)
at org.elasticsearch.client.RestClientBuilder.createHttpClient(RestClientBuilder.java:238)
at org.elasticsearch.client.RestClientBuilder.access$000(RestClientBuilder.java:42)
at org.elasticsearch.client.RestClientBuilder$1.run(RestClientBuilder.java:209)
at org.elasticsearch.client.RestClientBuilder$1.run(RestClientBuilder.java:206)
at java.security.AccessController.doPrivileged(Native Method)
at org.elasticsearch.client.RestClientBuilder.build(RestClientBuilder.java:206)
at org.elasticsearch.client.RestHighLevelClient.<init>(RestHighLevelClient.java:269)
at org.elasticsearch.client.RestHighLevelClient.<init>(RestHighLevelClient.java:261)
at org.apache.flink.streaming.connectors.elasticsearch6.Elasticsearch6ApiCallBridge.createClient(Elasticsearch6ApiCallBridge.java:75)
at org.apache.flink.streaming.connectors.elasticsearch6.Elasticsearch6ApiCallBridge.createClient(Elasticsearch6ApiCallBridge.java:47)
at org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkBase.open(ElasticsearchSinkBase.java:308)
at org.apache.flink.api.common.functions.util.FunctionUtils.openFunction(FunctionUtils.java:36)
at org.apache.flink.streaming.api.operators.AbstractUdfStreamOperator.open(AbstractUdfStreamOperator.java:102)
at org.apache.flink.streaming.api.operators.StreamSink.open(StreamSink.java:48)
at org.apache.flink.streaming.runtime.tasks.StreamTask.openAllOperators(StreamTask.java:529)
at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:393)
at org.apache.flink.runtime.taskmanager.Task.doRun(Task.java:705)
at org.apache.flink.runtime.taskmanager.Task.run(Task.java:530)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.http.nio.reactor.IOReactorException: Failure opening selector
at org.apache.http.impl.nio.reactor.AbstractMultiworkerIOReactor.<init>(AbstractMultiworkerIOReactor.java:146)
at org.apache.http.impl.nio.reactor.DefaultConnectingIOReactor.<init>(DefaultConnectingIOReactor.java:81)
at org.apache.http.impl.nio.reactor.DefaultConnectingIOReactor.<init>(DefaultConnectingIOReactor.java:96)
at org.apache.http.impl.nio.client.IOReactorUtils.create(IOReactorUtils.java:41)
... 23 more
Caused by: java.io.IOException: Too many open files
at sun.nio.ch.EPollArrayWrapper.epollCreate(Native Method)
at sun.nio.ch.EPollArrayWrapper.<init>(EPollArrayWrapper.java:130)
at sun.nio.ch.EPollSelectorImpl.<init>(EPollSelectorImpl.java:69)
at sun.nio.ch.EPollSelectorProvider.openSelector(EPollSelectorProvider.java:36)
at java.nio.channels.Selector.open(Selector.java:227)
at org.apache.http.impl.nio.reactor.AbstractMultiworkerIOReactor.<init>(AbstractMultiworkerIOReactor.java:144)
... 26 more
这个报错以前也遇到过的,先看下容器的句柄上限
# ulimit -aS | grep open
open files (-n) 65536
Flink TaskManger里面就这一个job,正常不应该占这么多句柄的。
因为这个job之前并行度设置很低的时候,部署成功过,所以怀疑是并行度设置高导致的。
当时给的并行度单个taskmanager是64,降低到32看一下。
降低到32后,这次job部署成功了,看下容器的句柄数,果然非常高。
[root@bss-zcm-011 flink]# lsof -p 13 | wc -l
56020
使用File Leak Detector分析句柄
用File Leak Detector这个工具检查一下,官网下载得到file-leak-detector-1.13-jar-with-dependencies.jar
。
先取消job后把TaskManager容器重启,进入容器,attach到taskmanager进程上。
java -jar /flink/file-leak-detector-1.13-jar-with-dependencies.jar 13 http=19999,threshold=20000,strong
然后部署job,job成功运行后,执行
curl http://localhost:19999/ > openfiles.txt
分析openfiles.txt文件,首先这个文件里包含的句柄数量是18313个,和实际占用的5万多个有差距,这是因为这个工具是通过javaagent去动态拦截某些java类的方法,例如写入文件,网络通信等,并不严格包含所有句柄,不过通过里面的内容是可以分析问题的。
18313 descriptors are open
紧接着我发现这里面绝大多数是pool-
开头的线程打开的,熟悉线程池的知道,jdk线程池的默认线程名称就是这个。
#165 selector by thread:pool-68-thread-1 on Thu Apr 02 10:36:59 CST 2020
at java.nio.channels.spi.AbstractSelector.<init>(AbstractSelector.java:86)
at sun.nio.ch.SelectorImpl.<init>(SelectorImpl.java:54)
at sun.nio.ch.EPollSelectorImpl.<init>(EPollSelectorImpl.java:64)
at sun.nio.ch.EPollSelectorProvider.openSelector(EPollSelectorProvider.java:36)
at java.nio.channels.Selector.open(Selector.java:227)
at org.apache.http.impl.nio.reactor.AbstractIOReactor.<init>(AbstractIOReactor.java:103)
at org.apache.http.impl.nio.reactor.BaseIOReactor.<init>(BaseIOReactor.java:87)
at org.apache.http.impl.nio.reactor.AbstractMultiworkerIOReactor.execute(AbstractMultiworkerIOReactor.java:320)
at org.apache.http.impl.nio.conn.PoolingNHttpClientConnectionManager.execute(PoolingNHttpClientConnectionManager.java:189)
at org.apache.http.impl.nio.client.CloseableHttpAsyncClientBase.doExecute(CloseableHttpAsyncClientBase.java:67)
at org.apache.http.impl.nio.client.CloseableHttpAsyncClientBase.access$000(CloseableHttpAsyncClientBase.java:38)
at org.apache.http.impl.nio.client.CloseableHttpAsyncClientBase$1.run(CloseableHttpAsyncClientBase.java:57)
at java.lang.Thread.run(Thread.java:748)
pool-
开头的线程有17920个,我的job是1个source对应5个es sink的,并行度是32
这台主机的cpu是112核,docker容器没有对cpu资源进行隔离。
我突然发现 5*32*112=17920
看来是某个线程池的大小默认使用了cpu核数,pool-
开头的线程初始化了这个线程池
直接原因 HttpAsyncClient Sub Reactor线程池默认大小使用CPU核数
通过调试代码我发现是Flink ES Connector中的ElasticSearch RestHighLevelClient使用HttpAsyncClient创建的线程池
默认值是CPU核数,印证了猜想。
定制RestClientFactory 指定线程池大小
找到配置来源后搜索下es客户端的配置,参考Flink Elasticsearch Connector 官方文档
For Elasticsearch 6.x and above, internally, the RestHighLevelClient is used for cluster communication. By default, the connector uses the default configurations for the REST client. To have custom configuration for the REST client, users can provide a RestClientFactory implementation when setting up the ElasticsearchClient.Builder that builds the sink.
public class ESRestClientFactory implements RestClientFactory {
private int ioThreadCount = -1;
public ESRestClientFactory(int ioThreadCount) {
this.ioThreadCount = ioThreadCount;
}
@Override
public void configureRestClientBuilder(RestClientBuilder restClientBuilder) {
restClientBuilder.setMaxRetryTimeoutMillis(this.maxRetryTimeout);
restClientBuilder.setHttpClientConfigCallback(new RestClientBuilder.HttpClientConfigCallback() {
@Override
public HttpAsyncClientBuilder customizeHttpClient(HttpAsyncClientBuilder httpClientBuilder) {
if (-1 != ioThreadCount) {
httpClientBuilder
.setDefaultIOReactorConfig(IOReactorConfig.custom().setIoThreadCount(ioThreadCount).build());
}
return httpClientBuilder;
}
});
}
}
将上面的ioThreadCount设置一个较小的值。
这样运行后,句柄数少了很多。这样单个taskmanager 64并行度运行job,也不会发生句柄耗尽了。
设置下HttpAsyncClient的线程名称
PS: 熟悉Mycat分库分表中间件的话,对于纯手工NIO应该不陌生的。下面main reactor,sub reactor的概念相信你能百度到,这里不会赘述。
上面我发现默认线程池名称对排查问题不友好,我想自己设置一下线程名称前缀,至少包含Flink ES Sink实例的名称。
首先http请求ES是个客户端连接操作,对应org.apache.http.impl.nio.reactor.DefaultConnectingIOReactor
,这个类继承了org.apache.http.impl.nio.reactor.AbstractMultiworkerIOReactor
AbstractMultiworkerIOReactor
是Main Reactor,负责创建ioThreadCount个org.apache.http.impl.nio.reactor.BaseIOReactor
, BaseIOReactor即为Sub Reactor。
设置Main Reactor的线程名称
默认情况下Main Reactor的ThreadFactory是java.util.concurrent.Executors#defaultThreadFactory
,这非常不友好
观察到Flink ES Sink线程的名称XXXFilter -> Sink: xxxSink (26/128)
,里面都有Sink:
。把Sink:
后面部分的截取出来,就可以知道这个Main Reactor是哪个并行度了。
package com.navercorp.pinpoint.flink.statistic;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.atomic.AtomicInteger;
import org.apache.flink.streaming.connectors.elasticsearch6.RestClientFactory;
import org.apache.http.auth.AuthScope;
import org.apache.http.auth.UsernamePasswordCredentials;
import org.apache.http.client.CredentialsProvider;
import org.apache.http.impl.client.BasicCredentialsProvider;
import org.apache.http.impl.nio.client.HttpAsyncClientBuilder;
import org.apache.http.impl.nio.reactor.IOReactorConfig;
import org.elasticsearch.client.RestClientBuilder;
/**
* @author tankilo
*/
public class ESRestClientFactory implements RestClientFactory {
private int ioThreadCount;
public ESRestClientFactory(int ioThreadCount) {
this.ioThreadCount = ioThreadCount;
}
@Override
public void configureRestClientBuilder(RestClientBuilder restClientBuilder) {
restClientBuilder.setMaxRetryTimeoutMillis(this.maxRetryTimeout);
restClientBuilder.setHttpClientConfigCallback(new RestClientBuilder.HttpClientConfigCallback() {
@Override
public HttpAsyncClientBuilder customizeHttpClient(HttpAsyncClientBuilder httpClientBuilder) {
if (-1 != ioThreadCount) {
httpClientBuilder
.setDefaultIOReactorConfig(IOReactorConfig.custom().setIoThreadCount(ioThreadCount).build());
}
String threadName = Thread.currentThread().getName();
String namePrefix = threadName.substring(threadName.indexOf("Sink: ") + "Sink: ".length());
httpClientBuilder.setThreadFactory(new MyThreadFactory(namePrefix));
return httpClientBuilder;
}
});
}
private static class MyThreadFactory implements ThreadFactory {
private final ThreadGroup group;
private final AtomicInteger threadNumber = new AtomicInteger(1);
private final String namePrefix;
public MyThreadFactory(String namePrefix) {
this.namePrefix = "es-http-main-reactor-" + namePrefix + "-";
SecurityManager s = System.getSecurityManager();
group = (s != null) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();
}
@Override
public Thread newThread(Runnable r) {
Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0);
if (t.isDaemon()) {
t.setDaemon(false);
}
if (t.getPriority() != Thread.NORM_PRIORITY) {
t.setPriority(Thread.NORM_PRIORITY);
}
return t;
}
}
}
显示效果是es-http-main-reactor-xxxSink (6/8)-1
设置Sub Reactor的线程名称
Sub Reactor默认的线程名称都是I/O dispatcher 4479
这样的,ThreadFactory如下
org.apache.http.impl.nio.reactor.AbstractMultiworkerIOReactor.DefaultThreadFactory
static class DefaultThreadFactory implements ThreadFactory {
private final static AtomicLong COUNT = new AtomicLong(1);
@Override
public Thread newThread(final Runnable r) {
return new Thread(r, "I/O dispatcher " + COUNT.getAndIncrement());
}
}
这个看了下,没有地方可以设置,主要是ES Client的问题,ThreadFactory直接传入null使用了默认值,导致无法配置。
public DefaultConnectingIOReactor(final IOReactorConfig config) throws IOReactorException {
this(config, null);
}
总结
- 因为docker容器没有对cpu进行资源隔离,所以触发了句柄耗尽的问题,其实应该对taskmanager容器进行修改的,不过因为一些情况限制,选择对HttpAsyncClient Sub Reactor线程池的大小进行限制,从默认CPU个数减少到合适的值。
- Flink ES Connector目前为止还是同步写入的,这样ElasticSearch RestHighLevelClient中HttpAsyncClient Sub Reactor线程池默认使用CPU核数的行为是不是浪费?每个Sink都是同步写入的话,并发为1,那么Sub Reactor线程池可以设置为1么?