10分钟快速入门PyTorch (5)

前面一节我们讲了cnn以及如何使用pytorch实现简单的多层卷积神经网络,下面我们将进入rnn,对于rnn我也涉及不多,欢迎各位高手提出宝贵的意见。

关于rnn将分成三个部分,第一个部分先介绍rnn的基本结构以及在pytorch里面api的各个参数所表示的含义,下一个部分将介绍rnn如何在MNIST数据集上做分类,最后一个部分涉及一点点自然语言处理的东西。

RNN

首先介绍一下什么是rnn,rnn特别擅长处理序列类型的数据,因为他是一个循环的结构

1

一个序列的数据依次进入网络A,网络A循环的往后传递。

这就是RNN的基本结构类型。而最早的RNN模型,序列依次进入网络中,之前进入序列的数据会保存信息而对后面的数据产生影响,所以RNN有着记忆的特性,而同时越前面的数据进入序列的时间越早,所以对后面的数据的影响也就越弱,简而言之就是一个数据会更大程度受到其临近数据的影响。但是我们很有可能需要更长时间之前的信息,而这个能力传统的RNN特别弱,于是有了LSTM这个变体。

LSTM

2

这就是LSTM的模型结构,也是一个向后传递的链式模型,而现在广泛使用的RNN其实就是LSTM,序列中每个数据传入LSTM可以得到两个输出,而这两个输出和序列中下一个数据一起又作为传入LSTM的输入,然后不断地循环向后,直到序列结束。

下面结合pytorch一步一步来看数据传入LSTM是怎么运算的

首先需要定义好LSTM网络,需要nn.LSTM(),首先介绍一下这个函数里面的参数

input_size 表示的是输入的数据维数

hidden_size 表示的是输出维数

num_layers 表示堆叠几层的LSTM,默认是1

bias True 或者 False,决定是否使用bias

batch_first True 或者 False,因为nn.lstm()接受的数据输入是(序列长度,batch,输入维数),这和我们cnn输入的方式不太一致,所以使用batch_first,我们可以将输入变成(batch,序列长度,输入维数)

dropout 表示除了最后一层之外都引入一个dropout

bidirectional 表示双向LSTM,也就是序列从左往右算一次,从右往左又算一次,这样就可以两倍的输出

3

第一步首先是将传入的数据$x_t$和前面输出的$h_{t-1}$,$x_t$是输入的维数,比如是K,$h_{t-1}$是网络的输出维数,比如M,因为输出的维度是M,权重w的维数就是(M, M)和(M, K),b的维数就是(M, 1)和(M, 1),最后经过sigmoid激活函数,得到的f的维数是(M, 1)。

对于第一个数据,需要定义初始的h_0和c_0,所以nn.lstm()的输入Inputs:input, (h_0, c_0),表示输入的数据以及h_0和c_0,这个可以自己定义,如果不定义,默认就是0

4

第二步也是差不多的操作,只不多是另外两个权重加上不同的激活函数,一个使用的是sigmoid,一个使用的是tanh,得到的输出$i_t$和$\tilde{C}_t$都是(M, 1)。

5

接着这个乘法是矩阵每个位置对应相乘,然后将两个矩阵加起来,得到的输出$C_t$是(M, 1)。

6

最后一步得到的$o_t$也是(M, 1),然后$C_t$经过激活函数tanh,再和$o_t$每个位置相乘,得到的输出$h_t$也是(M, 1)。

最后得到的输出就是$h_t$和$C_t$,维数分别都是(M, 1),而输入$x_t$维数都是(K, 1)。

lstm = nn.LSTM(10, 30, batch_first=True)

可以通过这样定义一个一层的LSTM输入是10,输出是30

lstm.weight_hh_l0.size()
lstm.weight_ih_l0.size()
lstm.bias_hh_l0.size()
lstm.bias__ih_l0.size()

可以分别得到权重的维数,注意之前我们定义的4个weights被整合到了一起,比如这个lstm,输入是10维,输出是30维,相对应的weight就是30x10,这样的权重有4个,然后pytorch将这4个组合在了一起,方便表示,也就是lstm.weight_ih_l0,所以它的维数就是120x10

我们定义一个输入

x = Variable(torch.randn((50, 100, 10)))
h0 = Variable(torch.randn(1, 50, 30))
c0 = Variable(torch.randn(1, 50 ,30))

x的三个数字分别表示batch_size为50,序列长度为100,每个数据维数为10

h0的第二个参数表示batch_size为50,输出维数为30,第一个参数取决于网络层数和是否是双向的,如果双向需要乘2,如果是多层,就需要乘以网络层数

c0的三个参数和h0是一致的

out, (h_out, c_out) = lstm(x, (h0, c0))

这样就可以得到网络的输出了,和上面讲的一致,另外如果不传入h0和c0,默认的会传入相同维数的0矩阵

这就是我们如何在pytorch上使用RNN的基本操作了,了解完最基本的参数我们才能够使用其来做应用。

本文参考的资料来自如下博客

更多的RNN的应用可以看这个资源


本文代码已经上传到了github

欢迎查看我的知乎专栏,深度炼丹

欢迎访问我的博客

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,080评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,422评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,630评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,554评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,662评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,856评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,014评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,752评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,212评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,541评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,687评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,347评论 4 331
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,973评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,777评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,006评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,406评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,576评论 2 349

推荐阅读更多精彩内容