使用训练好的图像分类模型,预测测试集的所有图像,得到预测结果表格
1. 安装配置环境
pip install numpy pandas scikit-learn matplotlib seaborn requests tqdm opencv-python pillow kaleido -i https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
2. 构建图像分类数据集
# 下载数据集压缩包
!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/fruit30/fruit30_split.zip
# 解压
!unzip fruit30_split.zip >> /dev/null
# 删除压缩包
!rm fruit30_split.zip
# 下载 类别名称 和 ID索引号 的映射字典
!wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/dataset/fruit30/idx_to_labels.npy
3. 测试集图像分类预测结果
#导入工具包
import os
from tqdm import tqdm
import numpy as np
import pandas as pd
from PIL import Image
import torch
import torch.nn.functional as F
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)
#图像预处理
from torchvision import transforms
# # 训练集图像预处理:缩放裁剪、图像增强、转 Tensor、归一化
# train_transform = transforms.Compose([transforms.RandomResizedCrop(224),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# ])
# 测试集图像预处理-RCTN:缩放、裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
#载入数据集
# 数据集文件夹路径
dataset_dir = 'fruit30_split'
test_path = os.path.join(dataset_dir, 'val')
from torchvision import datasets
# 载入测试集
test_dataset = datasets.ImageFolder(test_path, test_transform)
print('测试集图像数量', len(test_dataset))
print('类别个数', len(test_dataset.classes))
print('各类别名称', test_dataset.classes)
# 载入类别名称 和 ID索引号 的映射字典
idx_to_labels = np.load('idx_to_labels.npy', allow_pickle=True).item()
# 获得类别名称
classes = list(idx_to_labels.values())
print(classes)
#导入已训练好的模型
model = torch.load('checkpoints/fruit30_pytorch_20220814.pth')
model = model.eval().to(device)
#测试集图像路径及标注
test_dataset.imgs[:10]
img_paths = [each[0] for each in test_dataset.imgs]
df = pd.DataFrame()
df['图像路径'] = img_paths
df['标注类别ID'] = test_dataset.targets
df['标注类别名称'] = [idx_to_labels[ID] for ID in test_dataset.targets]
df
#测试集每张图像的图像分类预测结果以及各类别置信度
# 记录 top-n 预测结果
n = 3
df_pred = pd.DataFrame()
for idx, row in tqdm(df.iterrows()):
img_path = row['图像路径']
img_pil = Image.open(img_path).convert('RGB')
input_img = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
pred_logits = model(input_img) # 执行前向预测,得到所有类别的 logit 预测分数
pred_softmax = F.softmax(pred_logits, dim=1) # 对 logit 分数做 softmax 运算
pred_dict = {}
top_n = torch.topk(pred_softmax, n) # 取置信度最大的 n 个结果
pred_ids = top_n[1].cpu().detach().numpy().squeeze() # 解析出类别
# top-n 预测结果
for i in range(1, n+1):
pred_dict['top-{}-预测ID'.format(i)] = pred_ids[i-1]
pred_dict['top-{}-预测名称'.format(i)] = idx_to_labels[pred_ids[i-1]]
pred_dict['top-n预测正确'] = row['标注类别ID'] in pred_ids
# 每个类别的预测置信度
for idx, each in enumerate(classes):
pred_dict['{}-预测置信度'.format(each)] = pred_softmax[0][idx].cpu().detach().numpy()
df_pred = df_pred.append(pred_dict, ignore_index=True)
df_pred
#连接两张表格
df=pd.concat([df,df_pred],axis=1)
df
#导出完整表格
df.to_csv('测试集预测结果.csv', index=False)
4. 测试集总体准确率评估指标
从测试集预测结果表格分析,计算出总体准确率评估指标和各类别准确率评估指标
#导入工具包
import pandas as pd
import numpy as np
from tqdm import tqdm
#载入类别名称和ID
idx_to_labels = np.load('idx_to_labels.npy', allow_pickle=True).item()
# 获得类别名称
classes = list(idx_to_labels.values())
print(classes)
#载入测试集预测结果表格
df = pd.read_csv('测试集预测结果.csv')
df
#准确率
#top1的预测类别名称与标注类别名称是否一致
sum(df['标注类别名称'] == df['top-1-预测名称']) / len(df)
#0.8775510204081632
#top-n准确率
#n越大 top-n准确率越大
sum(df['top-n预测正确']) / len(df)
#0.9656771799628943
#各类别其他评估指标
from sklearn.metrics import classification_report
print(classification_report(df['标注类别名称'], df['top-1-预测名称'], target_names=classes))
report = classification_report(df['标注类别名称'], df['top-1-预测名称'], target_names=classes, output_dict=True)
del report['accuracy']
df_report = pd.DataFrame(report).transpose()
df_report
macro avg:直接将每一类的评估指标求和取评价(算数平均值)
weighted avg:按照样本数量加权计算评估指标的平均值
#各类别准确率recall
accuracy_list = []
for fruit in tqdm(classes):
df_temp = df[df['标注类别名称']==fruit]
accuracy = sum(df_temp['标注类别名称'] == df_temp['top-1-预测名称']) / len(df_temp)
accuracy_list.append(accuracy)
# 计算 宏平均准确率 和 加权平均准确率
acc_macro = np.mean(accuracy_list)
acc_weighted = sum(accuracy_list * df_report.iloc[:-2]['support'] / len(df))
accuracy_list.append(acc_macro)
accuracy_list.append(acc_weighted)
df_report['accuracy'] = accuracy_list
df_report
df_report.to_csv('各类别准确率评估指标.csv', index_label='类别')
5. 混淆矩阵(confusion)
测试集中30个类别,哪些类别被模型误判为哪些类别
通过测试集所有图像预测结果,生成多类别混淆矩阵,评估模型准确度
#导入工具包
import pandas as pd
import numpy as np
from tqdm import tqdm
import math
import cv2
import matplotlib.pyplot as plt
%matplotlib inline
#载入类别名称和ID
idx_to_labels = np.load('idx_to_labels.npy', allow_pickle=True).item()
# 获得类别名称
classes = list(idx_to_labels.values())
print(classes)
#载入测试集预测结果表格
df = pd.read_csv('测试集预测结果.csv')
df.head()
#生成混淆矩阵
from sklearn.metrics import confusion_matrix
confusion_matrix_model = confusion_matrix(df['标注类别名称'], df['top-1-预测名称'])
confusion_matrix_model.shape
confusion_matrix_model
#可视化混淆矩阵
import itertools
def cnf_matrix_plotter(cm, classes, cmap=plt.cm.Blues):
"""
传入混淆矩阵和标签名称列表,绘制混淆矩阵
"""
plt.figure(figsize=(10, 10))
plt.imshow(cm, interpolation='nearest', cmap=cmap)
# plt.colorbar() # 色条
tick_marks = np.arange(len(classes))
plt.title('混淆矩阵', fontsize=30)
plt.xlabel('预测类别', fontsize=25, c='r')
plt.ylabel('真实类别', fontsize=25, c='r')
plt.tick_params(labelsize=16) # 设置类别文字大小
plt.xticks(tick_marks, classes, rotation=90) # 横轴文字旋转
plt.yticks(tick_marks, classes)
# 写数字
threshold = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, cm[i, j],
horizontalalignment="center",
color="white" if cm[i, j] > threshold else "black",
fontsize=12)
plt.tight_layout()
plt.savefig('混淆矩阵.pdf', dpi=300) # 保存图像
plt.show()
# 查看所有配色方案
# dir(plt.cm)
# Blues
# BuGn
# Reds
# Greens
# Greys
# binary
# Oranges
# Purples
# BuPu
# GnBu
# OrRd
# RdPu
cnf_matrix_plotter(confusion_matrix_model, classes, cmap='Blues')
#筛选出测试集中,真实为A类,但被误判为B类的图像
true_A = '荔枝'
pred_B = '杨梅'
wrong_df = df[(df['标注类别名称']==true_A)&(df['top-1-预测名称']==pred_B)]
wrong_df
#可视化上表中所有被误判的图像
for idx, row in wrong_df.iterrows():
img_path = row['图像路径']
img_bgr = cv2.imread(img_path)
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb)
title_str = img_path + '\nTrue:' + row['标注类别名称'] + ' Pred:' + row['top-1-预测名称']
plt.title(title_str)
plt.show()
6. PR曲线
绘制每个类别的PR曲线,计算AP值
#导入工具包
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#载入类别名称和ID
idx_to_labels = np.load('idx_to_labels.npy', allow_pickle=True).item()
# 获得类别名称
classes = list(idx_to_labels.values())
print(classes)
#载入测试集预测结果表格
df = pd.read_csv('测试集预测结果.csv')
df.head()
#绘制某一类别的PR曲线
specific_class = '荔枝'
# 二分类标注
y_test = (df['标注类别名称'] == specific_class)
# 二分类预测置信度
y_score = df['荔枝-预测置信度']
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score
precision, recall, thresholds = precision_recall_curve(y_test, y_score)
AP = average_precision_score(y_test, y_score, average='weighted')
#PR曲线的面积是AP,AP越接近1越好
AP
plt.figure(figsize=(12, 8))
# 绘制 PR 曲线
plt.plot(recall, precision, linewidth=5, label=specific_class)
# 随机二分类模型
# 阈值小,所有样本都被预测为正类,recall为1,precision为正样本百分比
# 阈值大,所有样本都被预测为负类,recall为0,precision波动较大
plt.plot([0, 0], [0, 1], ls="--", c='.3', linewidth=3, label='随机模型')
plt.plot([0, 1], [0.5, sum(y_test==1)/len(df)], ls="--", c='.3', linewidth=3)
plt.xlim([-0.01, 1.0])
plt.ylim([0.0, 1.01])
plt.rcParams['font.size'] = 22
plt.title('{} PR曲线 AP:{:.3f}'.format(specific_class, AP))
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.legend()
plt.grid(True)
plt.savefig('{}-PR曲线.pdf'.format(specific_class), dpi=120, bbox_inches='tight')
plt.show()
#绘制所有类别的ROC曲线
from matplotlib import colors as mcolors
import random
random.seed(124)
colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan', 'black', 'indianred', 'brown', 'firebrick', 'maroon', 'darkred', 'red', 'sienna', 'chocolate', 'yellow', 'olivedrab', 'yellowgreen', 'darkolivegreen', 'forestgreen', 'limegreen', 'darkgreen', 'green', 'lime', 'seagreen', 'mediumseagreen', 'darkslategray', 'darkslategrey', 'teal', 'darkcyan', 'dodgerblue', 'navy', 'darkblue', 'mediumblue', 'blue', 'slateblue', 'darkslateblue', 'mediumslateblue', 'mediumpurple', 'rebeccapurple', 'blueviolet', 'indigo', 'darkorchid', 'darkviolet', 'mediumorchid', 'purple', 'darkmagenta', 'fuchsia', 'magenta', 'orchid', 'mediumvioletred', 'deeppink', 'hotpink']
markers = [".",",","o","v","^","<",">","1","2","3","4","8","s","p","P","*","h","H","+","x","X","D","d","|","_",0,1,2,3,4,5,6,7,8,9,10,11]
linestyle = ['--', '-.', '-']
def get_line_arg():
'''
随机产生一种绘图线型
'''
line_arg = {}
line_arg['color'] = random.choice(colors)
# line_arg['marker'] = random.choice(markers)
line_arg['linestyle'] = random.choice(linestyle)
line_arg['linewidth'] = random.randint(1, 4)
# line_arg['markersize'] = random.randint(3, 5)
return line_arg
get_line_arg()
plt.figure(figsize=(14, 10))
plt.xlim([-0.01, 1.0])
plt.ylim([0.0, 1.01])
# plt.plot([0, 1], [0, 1],ls="--", c='.3', linewidth=3, label='随机模型')
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.rcParams['font.size'] = 22
plt.grid(True)
ap_list = []
for each_class in classes:
y_test = list((df['标注类别名称'] == each_class))
y_score = list(df['{}-预测置信度'.format(each_class)])
precision, recall, thresholds = precision_recall_curve(y_test, y_score)
AP = average_precision_score(y_test, y_score, average='weighted')
plt.plot(recall, precision, **get_line_arg(), label=each_class)
plt.legend()
ap_list.append(AP)
plt.legend(loc='best', fontsize=12)
plt.savefig('各类别PR曲线.pdf'.format(specific_class), dpi=120, bbox_inches='tight')
plt.show()
#将AP增加至各类别准确率评估指标表格中
df_report = pd.read_csv('各类别准确率评估指标.csv')
df_report
# 计算 AUC值 的 宏平均 和 加权平均
macro_avg_auc = np.mean(ap_list)
weighted_avg_auc = sum(ap_list * df_report.iloc[:-2]['support'] / len(df))
ap_list.append(macro_avg_auc)
ap_list.append(weighted_avg_auc)
df_report['AP'] = ap_list
df_report
df_report.to_csv('各类别准确率评估指标.csv', index=False)
7. ROC曲线
绘制每个类别的ROC曲线,计算AUC值
#导入工具包
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
#载入类别名称和ID
idx_to_labels = np.load('idx_to_labels.npy', allow_pickle=True).item()
# 获得类别名称
classes = list(idx_to_labels.values())
print(classes)
#载入测试集预测结果表格
df = pd.read_csv('测试集预测结果.csv')
df.head()
#绘制某一类别的ROC曲线
specific_class = '荔枝'
# 二分类标注
y_test = (df['标注类别名称'] == specific_class)
y_test
# 二分类置信度
y_score = df['荔枝-预测置信度']
y_score
from sklearn.metrics import roc_curve, auc
fpr, tpr, threshold = roc_curve(y_test, y_score)
plt.figure(figsize=(12, 8))
plt.plot(fpr, tpr, linewidth=5, label=specific_class)
plt.plot([0, 1], [0, 1],ls="--", c='.3', linewidth=3, label='随机模型')
plt.xlim([-0.01, 1.0])
plt.ylim([0.0, 1.01])
plt.rcParams['font.size'] = 22
plt.title('{} ROC曲线 AUC:{:.3f}'.format(specific_class, auc(fpr, tpr)))
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.legend()
plt.grid(True)
plt.savefig('{}-ROC曲线.pdf'.format(specific_class), dpi=120, bbox_inches='tight')
plt.show()
# yticks = ax.yaxis.get_major_ticks()
# yticks[0].label1.set_visible(False)
auc(fpr, tpr)
#绘制所有类别的ROC曲线
from matplotlib import colors as mcolors
import random
random.seed(124)
colors = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'tab:purple', 'tab:brown', 'tab:pink', 'tab:gray', 'tab:olive', 'tab:cyan', 'black', 'indianred', 'brown', 'firebrick', 'maroon', 'darkred', 'red', 'sienna', 'chocolate', 'yellow', 'olivedrab', 'yellowgreen', 'darkolivegreen', 'forestgreen', 'limegreen', 'darkgreen', 'green', 'lime', 'seagreen', 'mediumseagreen', 'darkslategray', 'darkslategrey', 'teal', 'darkcyan', 'dodgerblue', 'navy', 'darkblue', 'mediumblue', 'blue', 'slateblue', 'darkslateblue', 'mediumslateblue', 'mediumpurple', 'rebeccapurple', 'blueviolet', 'indigo', 'darkorchid', 'darkviolet', 'mediumorchid', 'purple', 'darkmagenta', 'fuchsia', 'magenta', 'orchid', 'mediumvioletred', 'deeppink', 'hotpink']
markers = [".",",","o","v","^","<",">","1","2","3","4","8","s","p","P","*","h","H","+","x","X","D","d","|","_",0,1,2,3,4,5,6,7,8,9,10,11]
linestyle = ['--', '-.', '-']
def get_line_arg():
'''
随机产生一种绘图线型
'''
line_arg = {}
line_arg['color'] = random.choice(colors)
# line_arg['marker'] = random.choice(markers)
line_arg['linestyle'] = random.choice(linestyle)
line_arg['linewidth'] = random.randint(1, 4)
# line_arg['markersize'] = random.randint(3, 5)
return line_arg
get_line_arg()
plt.figure(figsize=(14, 10))
plt.xlim([-0.01, 1.0])
plt.ylim([0.0, 1.01])
plt.plot([0, 1], [0, 1],ls="--", c='.3', linewidth=3, label='随机模型')
plt.xlabel('False Positive Rate (1 - Specificity)')
plt.ylabel('True Positive Rate (Sensitivity)')
plt.rcParams['font.size'] = 22
plt.grid(True)
auc_list = []
for each_class in classes:
y_test = list((df['标注类别名称'] == each_class))
y_score = list(df['{}-预测置信度'.format(each_class)])
fpr, tpr, threshold = roc_curve(y_test, y_score)
plt.plot(fpr, tpr, **get_line_arg(), label=each_class)
plt.legend()
auc_list.append(auc(fpr, tpr))
plt.legend(loc='best', fontsize=12)
plt.savefig('各类别ROC曲线.pdf'.format(specific_class), dpi=120, bbox_inches='tight')
plt.show()
#将AUC增加至各类别准确率评估指标表格中
df_report = pd.read_csv('各类别准确率评估指标.csv')
df_report
# 计算 AUC值 的 宏平均 和 加权平均
macro_avg_auc = np.mean(auc_list)
weighted_avg_auc = sum(auc_list * df_report.iloc[:-2]['support'] / len(df))
auc_list.append(macro_avg_auc)
auc_list.append(weighted_avg_auc)
df_report['AUC'] = auc_list
df_report
df_report.to_csv('各类别准确率评估指标.csv', index=False)
8. 各类别准确率评估指标柱状图
#导入工具包
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
#导入各类别准确率评估指标表格
df = pd.read_csv('各类别准确率评估指标.csv')
df
#选择评估指标
# feature = 'precision'
# feature = 'recall'
# feature = 'f1-score'
feature = 'accuracy'
# feature = 'AP'
# feature = 'AUC'
#绘制柱状图
df_plot = df.sort_values(by=feature, ascending=False)
plt.figure(figsize=(22, 7))
x = df_plot['类别']
y = df_plot[feature]
ax = plt.bar(x, y, width=0.6, facecolor='#1f77b4', edgecolor='k')
plt.bar_label(ax, fmt='%.2f', fontsize=15) # 置信度数值
plt.xticks(rotation=45)
plt.tick_params(labelsize=15)
# plt.xlabel('类别', fontsize=20)
plt.ylabel(feature, fontsize=20)
plt.title('准确率评估指标 {}'.format(feature), fontsize=25)
plt.savefig('各类别准确率评估指标柱状图-{}.pdf'.format(feature), dpi=120, bbox_inches='tight')
plt.show()
9. 计算测试集图像语义特征
抽取pytorch训练得到的图像分类模型中间层的输出特征,作为输入图像的语义特征
计算测试集所有图像的语义特征,使用T- SNE和UMAP两种降维方法降维至二维和三维,可视化
#导入工具包
from tqdm import tqdm
import pandas as pd
import numpy as np
import torch
import cv2
from PIL import Image
# 忽略烦人的红色提示
import warnings
warnings.filterwarnings("ignore")
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print('device', device)
#图像预处理
from torchvision import transforms
# # 训练集图像预处理:缩放裁剪、图像增强、转 Tensor、归一化
# train_transform = transforms.Compose([transforms.RandomResizedCrop(224),
# transforms.RandomHorizontalFlip(),
# transforms.ToTensor(),
# transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
# ])
# 测试集图像预处理-RCTN:缩放、裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
#导入训练好的模型
model = torch.load('checkpoints/fruit30_pytorch_20220814.pth')
model = model.eval().to(device)
#抽取模型中间层输出结果作为语义特征
from torchvision.models.feature_extraction import create_feature_extractor
model_trunc = create_feature_extractor(model, return_nodes={'avgpool': 'semantic_feature'})
#计算单张图像的语义特征
img_path = 'fruit30_split/val/菠萝/105.jpg'
img_pil = Image.open(img_path)
input_img = test_transform(img_pil) # 预处理
input_img = input_img.unsqueeze(0).to(device)
# 执行前向预测,得到指定中间层的输出
pred_logits = model_trunc(input_img)
pred_logits['semantic_feature'].squeeze().detach().cpu().numpy().shape
# pred_logits['semantic_feature'].squeeze().detach().cpu().numpy()
#载入测试集图像分类结果
df = pd.read_csv('测试集预测结果.csv')
df.head()
#计算测试集每张图像的语义特征
encoding_array = []
img_path_list = []
for img_path in tqdm(df['图像路径']):
img_path_list.append(img_path)
img_pil = Image.open(img_path).convert('RGB')
input_img = test_transform(img_pil).unsqueeze(0).to(device) # 预处理
feature = model_trunc(input_img)['semantic_feature'].squeeze().detach().cpu().numpy() # 执行前向预测,得到 avgpool 层输出的语义特征
encoding_array.append(feature)
encoding_array = np.array(encoding_array)
encoding_array.shape
#保存为本地的.npy文件
# 保存为本地的 npy 文件
np.save('测试集语义特征.npy', encoding_array)
10. 测试集语义特征T-SNE降维可视化
#导入工具包
import numpy as np
import pandas as pd
import cv2
#载入测试集图像语义特征
encoding_array = np.load('测试集语义特征.npy', allow_pickle=True)
encoding_array.shape
#载入测试集图像分类结果
df = pd.read_csv('测试集预测结果.csv')
df.head()
classes = df['标注类别名称'].unique()
print(classes)
#可视化
import seaborn as sns
marker_list = ['.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', '8', 's', 'p', 'P', '*', 'h', 'H', '+', 'x', 'X', 'D', 'd', '|', '_', 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
class_list = np.unique(df['标注类别名称'])
class_list
n_class = len(class_list) # 测试集标签类别数
palette = sns.hls_palette(n_class) # 配色方案
sns.palplot(palette)
# 随机打乱颜色列表和点型列表
import random
random.seed(1234)
random.shuffle(marker_list)
random.shuffle(palette)
#T-SNE降维至二维
# 降维到二维和三维
from sklearn.manifold import TSNE
tsne = TSNE(n_components=2, n_iter=20000)
X_tsne_2d = tsne.fit_transform(encoding_array)
X_tsne_2d.shape
#可视化
# 不同的 符号 表示 不同的 标注类别
show_feature = '标注类别名称'
plt.figure(figsize=(14, 14))
for idx, fruit in enumerate(class_list): # 遍历每个类别
# 获取颜色和点型
color = palette[idx]
marker = marker_list[idx%len(marker_list)]
# 找到所有标注类别为当前类别的图像索引号
indices = np.where(df[show_feature]==fruit)
plt.scatter(X_tsne_2d[indices, 0], X_tsne_2d[indices, 1], color=color, marker=marker, label=fruit, s=150)
plt.legend(fontsize=16, markerscale=1, bbox_to_anchor=(1, 1))
plt.xticks([])
plt.yticks([])
plt.savefig('语义特征t-SNE二维降维可视化.pdf', dpi=300) # 保存图像
plt.show()
#plotply交互式可视化
import plotly.express as px
df_2d = pd.DataFrame()
df_2d['X'] = list(X_tsne_2d[:, 0].squeeze())
df_2d['Y'] = list(X_tsne_2d[:, 1].squeeze())
df_2d['标注类别名称'] = df['标注类别名称']
df_2d['预测类别'] = df['top-1-预测名称']
df_2d['图像路径'] = df['图像路径']
df_2d.to_csv('t-SNE-2D.csv', index=False)
df_2d
fig = px.scatter(df_2d,
x='X',
y='Y',
color=show_feature,
labels=show_feature,
symbol=show_feature,
hover_name='图像路径',
opacity=0.8,
width=1000,
height=600
)
# 设置排版
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
fig.show()
fig.write_html('语义特征t-SNE二维降维plotly可视化.html')
# 查看图像
img_path_temp = 'fruit30_split/val/火龙果/3.jpg'
img_bgr = cv2.imread(img_path_temp)
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb)
temp_df = df[df['图像路径'] == img_path_temp]
title_str = img_path_temp + '\nTrue:' + temp_df['标注类别名称'].item() + ' Pred:' + temp_df['top-1-预测名称'].item()
plt.title(title_str)
plt.show()
#T-SNE降维至三维,并可视化
# 降维到三维
from sklearn.manifold import TSNE
tsne = TSNE(n_components=3, n_iter=10000)
X_tsne_3d = tsne.fit_transform(encoding_array)
X_tsne_3d.shape
show_feature = '标注类别名称'
# show_feature = '预测类别'
df_3d = pd.DataFrame()
df_3d['X'] = list(X_tsne_3d[:, 0].squeeze())
df_3d['Y'] = list(X_tsne_3d[:, 1].squeeze())
df_3d['Z'] = list(X_tsne_3d[:, 2].squeeze())
df_3d['标注类别名称'] = df['标注类别名称']
df_3d['预测类别'] = df['top-1-预测名称']
df_3d['图像路径'] = df['图像路径']
df_3d.to_csv('t-SNE-3D.csv', index=False)
df_3d
fig = px.scatter_3d(df_3d,
x='X',
y='Y',
z='Z',
color=show_feature,
labels=show_feature,
symbol=show_feature,
hover_name='图像路径',
opacity=0.6,
width=1000,
height=800)
# 设置排版
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
fig.show()
fig.write_html('语义特征t-SNE三维降维plotly可视化.html')
t-SNE (全称为 t-distributed Stochastic Neighbor Embedding,翻译为 t分布-随机邻近嵌入)是通过将数据点之间的相似度转化为条件概率,原始空间中数据点的相似度由高斯联合分布表示,嵌入空间中数据点的相似度由学生t分布 表示 能够将高维空间中的数据映射到低维空间中,并保留数据集的局部特性。
11. 测试集语义特征UMAP降维可视化
#安装umap
pip install umap-learn datashader bokeh holoviews scikit-image colorcet
#导入工具包
import numpy as np
import pandas as pd
import cv2
#载入测试集图像语义特征
encoding_array = np.load('测试集语义特征.npy', allow_pickle=True)
encoding_array.shape
#载入测试集图像分类结果
df = pd.read_csv('测试集预测结果.csv')
df.head()
classes = df['标注类别名称'].unique()
print(classes)
可视化
import seaborn as sns
marker_list = ['.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', '8', 's', 'p', 'P', '*', 'h', 'H', '+', 'x', 'X', 'D', 'd', '|', '_', 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
class_list = np.unique(df['标注类别名称'])
class_list
n_class = len(class_list) # 测试集标签类别数
palette = sns.hls_palette(n_class) # 配色方案
sns.palplot(palette)
# 随机打乱颜色列表和点型列表
import random
random.seed(1234)
random.shuffle(marker_list)
random.shuffle(palette)
#UMAP降维至二维可视化
import umap
import umap.plot
mapper = umap.UMAP(n_neighbors=10, n_components=2, random_state=12).fit(encoding_array)
mapper.embedding_.shape
X_umap_2d = mapper.embedding_
X_umap_2d.shape
# 不同的 符号 表示 不同的 标注类别
show_feature = '标注类别名称'
plt.figure(figsize=(14, 14))
for idx, fruit in enumerate(class_list): # 遍历每个类别
# 获取颜色和点型
color = palette[idx]
marker = marker_list[idx%len(marker_list)]
# 找到所有标注类别为当前类别的图像索引号
indices = np.where(df[show_feature]==fruit)
plt.scatter(X_umap_2d[indices, 0], X_umap_2d[indices, 1], color=color, marker=marker, label=fruit, s=150)
plt.legend(fontsize=16, markerscale=1, bbox_to_anchor=(1, 1))
plt.xticks([])
plt.yticks([])
plt.savefig('语义特征UMAP二维降维可视化.pdf', dpi=300) # 保存图像
plt.show()
#新来一张新图像,可视化语义特征
#下载新图像
wget https://zihao-openmmlab.obs.cn-east-3.myhuaweicloud.com/20220716-mmclassification/test/0818/test_kiwi.jpg
#导入模型、预处理
import cv2
import torch
from PIL import Image
from torchvision import transforms
# 有 GPU 就用 GPU,没有就用 CPU
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model = torch.load('checkpoints/fruit30_pytorch_20220814.pth')
model = model.eval().to(device)
from torchvision.models.feature_extraction import create_feature_extractor
model_trunc = create_feature_extractor(model, return_nodes={'avgpool': 'semantic_feature'})
# 测试集图像预处理-RCTN:缩放、裁剪、转 Tensor、归一化
test_transform = transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
#计算新图像的语义特征
img_path = 'test_kiwi.jpg'
img_pil = Image.open(img_path)
input_img = test_transform(img_pil) # 预处理
input_img = input_img.unsqueeze(0).to(device)
# 执行前向预测,得到指定中间层的输出
pred_logits = model_trunc(input_img)
semantic_feature = pred_logits['semantic_feature'].squeeze().detach().cpu().numpy().reshape(1,-1)
semantic_feature.shape
#对新图像语义特征降维
# umap降维
new_embedding = mapper.transform(semantic_feature)[0]
new_embedding
plt.figure(figsize=(14, 14))
for idx, fruit in enumerate(class_list): # 遍历每个类别
# 获取颜色和点型
color = palette[idx]
marker = marker_list[idx%len(marker_list)]
# 找到所有标注类别为当前类别的图像索引号
indices = np.where(df[show_feature]==fruit)
plt.scatter(X_umap_2d[indices, 0], X_umap_2d[indices, 1], color=color, marker=marker, label=fruit, s=150)
plt.scatter(new_embedding[0], new_embedding[1], color='r', marker='X', label=img_path, s=1000)
plt.legend(fontsize=16, markerscale=1, bbox_to_anchor=(1, 1))
plt.xticks([])
plt.yticks([])
plt.savefig('语义特征UMAP二维降维可视化-新图像.pdf', dpi=300) # 保存图像
plt.show()
#plotplt交互式可视化
import plotly.express as px
df_2d = pd.DataFrame()
df_2d['X'] = list(X_umap_2d[:, 0].squeeze())
df_2d['Y'] = list(X_umap_2d[:, 1].squeeze())
df_2d['标注类别名称'] = df['标注类别名称']
df_2d['预测类别'] = df['top-1-预测名称']
df_2d['图像路径'] = df['图像路径']
df_2d.to_csv('UMAP-2D.csv', index=False)
# 增加新图像的一行
new_img_row = {
'X':new_embedding[0],
'Y':new_embedding[1],
'标注类别名称':img_path,
'图像路径':img_path
}
df_2d = df_2d.append(new_img_row, ignore_index=True)
df_2d
fig = px.scatter(df_2d,
x='X',
y='Y',
color=show_feature,
labels=show_feature,
symbol=show_feature,
hover_name='图像路径',
opacity=0.8,
width=1000,
height=600
)
# 设置排版
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
fig.show()
fig.write_html('语义特征UMAP二维降维plotly可视化.html')
# 查看图像
img_path_temp = 'fruit30_split/val/火龙果/3.jpg'
img_bgr = cv2.imread(img_path_temp)
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb)
temp_df = df[df['图像路径'] == img_path_temp]
title_str = img_path_temp + '\nTrue:' + temp_df['标注类别名称'].item() + ' Pred:' + temp_df['top-1-预测名称'].item()
plt.title(title_str)
plt.show()
#UMAP降维至三维,并可视化
mapper = umap.UMAP(n_neighbors=10, n_components=3, random_state=12).fit(encoding_array)
X_umap_3d = mapper.embedding_
X_umap_3d.shape
show_feature = '标注类别名称'
# show_feature = '预测类别'
df_3d = pd.DataFrame()
df_3d['X'] = list(X_umap_3d[:, 0].squeeze())
df_3d['Y'] = list(X_umap_3d[:, 1].squeeze())
df_3d['Z'] = list(X_umap_3d[:, 2].squeeze())
df_3d['标注类别名称'] = df['标注类别名称']
df_3d['预测类别'] = df['top-1-预测名称']
df_3d['图像路径'] = df['图像路径']
df_3d.to_csv('UMAP-3D.csv', index=False)
df_3d
fig = px.scatter_3d(df_3d,
x='X',
y='Y',
z='Z',
color=show_feature,
labels=show_feature,
symbol=show_feature,
hover_name='图像路径',
opacity=0.6,
width=1000,
height=800)
# 设置排版
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
fig.show()
fig.write_html('语义特征UMAP三维降维plotly可视化.html')
#来了一张新图像,可视化语义特征
# umap降维
new_embedding = mapper.transform(semantic_feature)[0]
# 增加新图像的一行
new_img_row = {
'X':new_embedding[0],
'Y':new_embedding[1],
'Z':new_embedding[2],
'标注类别名称':img_path,
'图像路径':img_path
}
df_3d = df_3d.append(new_img_row, ignore_index=True)
df_3d
fig = px.scatter_3d(df_3d,
x='X',
y='Y',
z='Z',
color=show_feature,
labels=show_feature,
symbol=show_feature,
hover_name='图像路径',
opacity=0.6,
width=1000,
height=800)
# 设置排版
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
fig.show()
fig.write_html('语义特征UMAP三维降维plotly可视化.html')
UMAP:统一流形逼近与投影(UMAP,Uniform Manifold Approximation and Projection)是一种新的降维流形学习技术。UMAP是建立在黎曼几何和代数拓扑理论框架上的。UMAP是一种非常有效的可视化和可伸缩降维算法。在可视化质量方面,UMAP算法与t-SNE具有竞争优势,但是它保留了更多全局结构、具有优越的运行性能、更好的可扩展性。
UMAP降维可以直接加入新图像,加入原来的图中,t-SNE不可以直接加入一张新图像