10个常用算法

0x01 二分法

原理:
二分法查找,也称为折半法,是一种在有序数组中查找特定元素的搜索算法。

一般步驟:
(1)确定该区间的中间位置K;
(2)将查找的值T与array[k]比较。
若相等,查找成功返回此位置;否则确定新的查找区域,继续二分查找。每一次查找与中间值比较,可以确定是否查找成功,不成功当前查找区间将缩小一半,递归查找即可。

0x02 递归

原理:
一种通过重复将问题分解为同类的子问题而解决问题的方法

典型例子:
斐波那契数列
描述:斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368.....自然中的斐波那契数列") 自然中的斐波那契数列,这个数列从第3项开始,每一项都等于前两项之和。

解决方式:

def f(n, mermory={}):
    if n == 1 or n == 2:
        return 1
    else:
        try:
            return mermory[n]
        except KeyError:
            result = f(n-1)+f(n-2)
            mermory[n] = result
            return result


print(f(9))

0x03 回溯法

原理:
在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。
回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。
但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

解决问题一般步骤:
1、 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。

2 、确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间 。

3 、以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。

典型例子:
八皇后问题
描述:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

解决方式:https://blog.csdn.net/weixin_41865447/article/details/80034433

0x04 排序算法

概念:
将杂乱无章的数据元素,通过一定的方法按关键字顺序排列的过程叫做排序。

分类:
非稳定排序算法:快速排序、希尔排序、堆排序、直接选择排序
稳定的排序算法:基数排序、冒泡排序、直接插入排序、折半插入排序、归并排序

十个常用排序算法

0x05 搜索算法

利用计算机的高性能来有目的的穷举一个问题解空间的部分或所有的可能情况,从而求出问题的解的一种方法。

分类:
枚举算法、深度优先搜索、广度优先搜索、A*算法、回溯算法、蒙特卡洛树搜索、散列函数等算法。

0x06 哈希算法

将一个数据转换为一个标志,这个标志和源数据的每一个字节都有十分紧密的关系。

很难找到逆向规律

只要符合散列思想的算法都可以被称为是Hash算法

对不同的关键字可能得到同一散列地址,即key1≠key2,而f(key1)=f(key2),这种现象称为碰撞

0x07 贪心算法

原理
在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解
从问题的某一个初始解出发一步一步地进行,根据某个优化测度,每一步都要确保能获得局部最优解。每一步只考虑一个数据,他的选取应该满足局部优化的条件。若下一个数据和部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中,直到把所有数据枚举完,或者不能再添加算法停止。

一种近似算法

一般步骤:
1、建立数学模型来描述问题;
2、把求解的问题分成若干个子问题;
3、对每一子问题求解,得到子问题的局部最优解;
4、把子问题的解局部最优解合成原来解问题的一个解。

典型例子:
0/1背包问题
马踏棋盘
均分纸牌

例题:https://www.cnblogs.com/hust-chen/p/8646009.html

0x08 分治算法

概念:
分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

一般步骤:
(1)分解,将要解决的问题划分成若干规模较小的同类问题;
(2)求解,当子问题划分得足够小时,用较简单的方法解决;
(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。

典型例子:
排序中:归并排序、堆排序、快速排序;
实例:找伪币、求最值、棋盘覆盖

https://baike.baidu.com/item/%E5%88%86%E6%B2%BB%E7%AE%97%E6%B3%95/3263297

0x09 动态规划

概念:
用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。

动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。

举例:
线性动规:拦截导弹,合唱队形,挖地雷,建学校,剑客决斗等;
区域动规:石子合并, 加分二叉树,统计单词个数,炮兵布阵等;
树形动规:贪吃的九头龙,二分查找树,聚会的欢乐,数字三角形等;
背包问题:01背包问题,完全背包问题,分组背包问题,二维背包,装箱问题,挤牛奶(同济)等;

应用实例:
最短路径问题 ,项目管理,网络流优化等;

https://baike.baidu.com/item/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92/529408?fromtitle=%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%E7%AE%97%E6%B3%95&fromid=15742703&fr=aladdin

0x10 字符串匹配算法

概念:
在一个给定的字符文本内搜寻出自己想要找的一个字符串,平常所用的各种文本编辑器里的ctrl+F大多就是使用的这些字符匹配算法。

分类:
KMP、BM、Sunday、Horspool、RK

参考:
https://cloud.tencent.com/developer/news/282694
https://blog.csdn.net/paincupid/article/details/81159320

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容