hdu1053:Entropy(map,pq,哈夫曼树)

Problem Description

An entropy encoder is a data encoding method that achieves lossless data compression by encoding a message with “wasted” or “extra” information removed. In other words, entropy encoding removes information that was not necessary in the first place to accurately encode the message. A high degree of entropy implies a message with a great deal of wasted information; english text encoded in ASCII is an example of a message type that has very high entropy. Already compressed messages, such as JPEG graphics or ZIP archives, have very little entropy and do not benefit from further attempts at entropy encoding.

English text encoded in ASCII has a high degree of entropy because all characters are encoded using the same number of bits, eight. It is a known fact that the letters E, L, N, R, S and T occur at a considerably higher frequency than do most other letters in english text. If a way could be found to encode just these letters with four bits, then the new encoding would be smaller, would contain all the original information, and would have less entropy. ASCII uses a fixed number of bits for a reason, however: it’s easy, since one is always dealing with a fixed number of bits to represent each possible glyph or character. How would an encoding scheme that used four bits for the above letters be able to distinguish between the four-bit codes and eight-bit codes? This seemingly difficult problem is solved using what is known as a “prefix-free variable-length” encoding.

In such an encoding, any number of bits can be used to represent any glyph, and glyphs not present in the message are simply not encoded. However, in order to be able to recover the information, no bit pattern that encodes a glyph is allowed to be the prefix of any other encoding bit pattern. This allows the encoded bitstream to be read bit by bit, and whenever a set of bits is encountered that represents a glyph, that glyph can be decoded. If the prefix-free constraint was not enforced, then such a decoding would be impossible.

Consider the text “AAAAABCD”. Using ASCII, encoding this would require 64 bits. If, instead, we encode “A” with the bit pattern “00”, “B” with “01”, “C” with “10”, and “D” with “11” then we can encode this text in only 16 bits; the resulting bit pattern would be “0000000000011011”. This is still a fixed-length encoding, however; we’re using two bits per glyph instead of eight. Since the glyph “A” occurs with greater frequency, could we do better by encoding it with fewer bits? In fact we can, but in order to maintain a prefix-free encoding, some of the other bit patterns will become longer than two bits. An optimal encoding is to encode “A” with “0”, “B” with “10”, “C” with “110”, and “D” with “111”. (This is clearly not the only optimal encoding, as it is obvious that the encodings for B, C and D could be interchanged freely for any given encoding without increasing the size of the final encoded message.) Using this encoding, the message encodes in only 13 bits to “0000010110111”, a compression ratio of 4.9 to 1 (that is, each bit in the final encoded message represents as much information as did 4.9 bits in the original encoding). Read through this bit pattern from left to right and you’ll see that the prefix-free encoding makes it simple to decode this into the original text even though the codes have varying bit lengths.

As a second example, consider the text “THE CAT IN THE HAT”. In this text, the letter “T” and the space character both occur with the highest frequency, so they will clearly have the shortest encoding bit patterns in an optimal encoding. The letters “C”, “I’ and “N” only occur once, however, so they will have the longest codes.

There are many possible sets of prefix-free variable-length bit patterns that would yield the optimal encoding, that is, that would allow the text to be encoded in the fewest number of bits. One such optimal encoding is to encode spaces with “00”, “A” with “100”, “C” with “1110”, “E” with “1111”, “H” with “110”, “I” with “1010”, “N” with “1011” and “T” with “01”. The optimal encoding therefore requires only 51 bits compared to the 144 that would be necessary to encode the message with 8-bit ASCII encoding, a compression ratio of 2.8 to 1.

Input

AAAAABCD
THE_CAT_IN_THE_HAT
END

Output

64 13 4.9
144 51 2.8

方法一:使用简便运算,WPL=所有非叶子节点权重和

#include <iostream>
#include<string>
#include<map>
#include<queue>
#include<cstdio>
using namespace std;

int main()
{
    string input;
    int ans,a,b;
    while (cin>>input)
    {
        if(input!="END"){
            ans=0,a=0,b=0;
            map<char,int> record;
            for (int i=0;i<input.size();i++)
            {
                record[input[i]]++;
            }
            priority_queue<int,vector<int>,greater<int> > pq;
            for (map<char,int>::iterator i=record.begin();i!=record.end();i++)
            {
                pq.push(i->second);
            }
            if(pq.size()==1){
                printf("%d %d 8.0\n",input.size()*8,input.size());
                continue;
            }
            while (pq.size()>1) //若只有一个字母,此处循环进不来
            {
                a=pq.top();
                pq.pop();
                b=pq.top();
                pq.pop();
                pq.push(a+b);
                ans+=(a+b);
            }

            printf("%d %d %.1f\n",input.size()*8,ans,input.size()*8.0/ans);
        }
    }
    return 0;
}



注意事项

1.map[a]=b,若没有默认为0;map遍历i->first,i->second(pair)
2.特殊情况,pq为1
3.这里只求WPL,运用简便算法就好
4.每个用例后加\n

方法二:老老实实构建哈夫曼树

#include <iostream>
#include<string>
#include<map>
#include<queue>
#include<cstdio>
using namespace std;
class Node{
public:
    char a;
    int deep;
    int weight;
    Node *lchild,*rchild;
    Node(char ia,int ideep,int iweight){
        a=ia;
        deep=ideep;
        weight=iweight;
        lchild=0;
        rchild=0;
    }
    bool operator <(const Node &b)const{   //常成员函数,最后也要加const
        return weight>b.weight;//优先队列是大顶堆
    }
};

int main()
{
    string input;
    int ans,deep;
    while (cin>>input)
    {
        if(input!="END"){
            ans=0,deep=0;
            map<char,int> record;
            for (int i=0;i<input.size();i++)
            {
                record[input[i]]++;
            }
            priority_queue<Node> pq;
            for (map<char,int>::iterator i=record.begin();i!=record.end();i++)
            {
                Node temp(i->first,0,i->second); //其实temp只对应了一个内存空间
                pq.push(temp); //push会复制一个对象
            }

            if(pq.size()==1){
                printf("%d %d 8.0\n",input.size()*8,input.size());
                continue;
            }
            while (pq.size()>1) //若只有一个字母,此处循环进不来
            {
                Node *a=new Node(pq.top());//Node a这里的a到底是什么,并不代表一个对象?
                pq.pop();
                Node *b=new Node(pq.top());
                pq.pop();
                Node c('0',0,a->weight+b->weight);//其实c只对应了一个内存空间
                c.lchild=a;
                c.rchild=b;
                pq.push(c);    //push会复制一个对象
            }
            queue<Node> BFS;
            Node first=pq.top();
            BFS.push(first);

            while (!BFS.empty())     //广度优先遍历,先把所有子节点加入队列,而不是优先队列
            {
                Node current=BFS.front();
                BFS.pop();
                deep=current.deep;   //深度deep在BFS时处理,子节点深度比父节点大一
                if(current.lchild){  //总出错原来是空指针没有初始化
                    current.lchild->deep=deep+1;
                    BFS.push(*(current.lchild));
                }
                if(current.rchild){
                    current.rchild->deep=deep+1;
                    BFS.push(*(current.rchild));
                }
                if(!current.lchild&&!current.rchild){
                    ans+=current.deep*current.weight;
                }
            }

            printf("%d %d %.1f\n",input.size()*8,ans,input.size()*8.0/ans);
        }
    }
    return 0;
}

注意事项

1.栈和堆存储的区别要分清,如果存储在栈中重名的变量是一个内存区域,如果使用new在堆中分配,同名的变量不在一个内存区域中,这点十分重要!!!!!!!!!!!!!!!
2.const const
3.deep
4.g++编译器暂不支持c++11 中的nullptr,NULL是宏被定义为0,在初始化时一定要设为NULL,不然可能为其他值,与Java中不一样,Java中没有初始化默认为null!!!!!!!!!!!!!!!!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容