一个最小生成树算法的C++实现

最近在跟同事们聊到图论的最小生成树问题,以及如何编写算法,用于工程中解决实际问题,这里我也就顺便简单写几句。

什么是最小生成树?

现在假设有一个很实际的问题:我们要在n个城市中建立一个通信网络,则连通这n个城市需要布置n-1条通信线路,这个时候我们需要考虑如何在成本最低的情况下建立这个通信网?
于是我们就可以引入连通图来解决我们遇到的问题,n个城市就是图上的n个顶点,然后,边表示两个城市的通信线路,每条边上的权重就是我们搭建这条线路所需要的成本,所以现在我们有n个顶点的连通网可以建立不同的生成树,每一颗生成树都可以作为一个通信网,当我们构造这个连通网所花的成本最小时,搭建该连通网的生成树,就称为最小生成树。

普里姆算法

构造最小生成树有很多算法,但是他们都是利用了最小生成树的同一种性质:MST性质(假设N=(V,{E})是一个连通网,U是顶点集V的一个非空子集,如果(u,v)是一条具有最小权值的边,其中u属于U,v属于V-U,则必定存在一颗包含边(u,v)的最小生成树),下面就介绍使用MST性质生成最小生成树的算法:普里姆算法。

算法思路:首先从图中的一个起点a开始,把a加入U集合,然后,寻找从与a有关联的边中,权重最小的那条边并且该边的终点b在顶点集合:(V-U)中,我们也把b加入到集合U中,并且输出边(a,b)的信息,这样我们的集合U就有:{a,b},然后,我们寻找与a关联和b关联的边中,权重最小的那条边并且该边的终点在集合:(V-U)中,我们把c加入到集合U中,并且输出对应的那条边的信息,这样我们的集合U就有:{a,b,c}这三个元素了,一次类推,直到所有顶点都加入到了集合U。

例如存在下面的连通图:


image.png

假如我们先选择V0做为开始顶点,如上图所示,与V0直接相连的有V1、V5、V6,其中V6的权重最小,我们选择所V6加入到生成树集合中。接下来观察V0和V6,继续寻找一条到其他顶点的权重最小的边,可以看到V6->V1的权重最小,把V1加入到生成树中。以此类推,直到所有顶点完成选择。

一个C++算法实现

拿前面的图做为例子,具体实现下面的代码:

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

#include <string>
#include <vector>
#include <set>
#include <map>

// 邻边
struct SEdge
{
    std::string strVertexFrom;
    std::string strVertexTo;
    int nEdgeWeight;

    SEdge(const std::string& strFrom = "", const std::string& strTo = "", int nWeight = 0)
    {
        strVertexFrom = strFrom;
        strVertexTo = strTo;
        nEdgeWeight = nWeight;
    }
};

// 邻接矩阵
class CThroughMatrix
{
    // 顶点集合
    std::set<std::string> m_setVertex;

    // 邻边集合
    typedef std::map<std::string, int> MAP_TOVERTEX_WEIGHT_t;
    std::map<std::string, MAP_TOVERTEX_WEIGHT_t> m_mapEdge;

public:
    CThroughMatrix()
    {
    }
    ~CThroughMatrix()
    {
    }

    // 新增顶点名称
    void addVertex(const std::string& strVertex)
    {
        if (m_setVertex.find(strVertex) == m_setVertex.end())
        {
            m_setVertex.insert(strVertex);

            printf("add vertex:[%s] \n", strVertex.c_str());
        }
    }

    // 移除指定顶点
    void delVertex(const std::string& strVertex)
    {
        if (m_setVertex.find(strVertex) == m_setVertex.end())
            return;

        // 找该顶点的入度,删除邻边
        for (auto iter = m_mapEdge.begin(); iter != m_mapEdge.end(); ++iter)
        {
            MAP_TOVERTEX_WEIGHT_t& mapToVertexWeight = iter->second;

            auto iterEdge = mapToVertexWeight.find(strVertex);
            if (iterEdge != mapToVertexWeight.end())
            {
                printf("delete edge:[%s -> %s] weight:[%d] \n", iter->first.c_str(), iterEdge->first.c_str(), iterEdge->second);

                mapToVertexWeight.erase(iterEdge);
                if (mapToVertexWeight.empty())
                {
                    m_mapEdge.erase(iter);
                }
            }
        }
        
        // 找该顶点的出度,删除邻边
        auto iter = m_mapEdge.find(strVertex);
        if (iter != m_mapEdge.end())
        {
            MAP_TOVERTEX_WEIGHT_t& mapToVertexWeight = iter->second;

            for (auto iterEdge = mapToVertexWeight.begin(); iterEdge != mapToVertexWeight.end(); ++iterEdge)
            {
                printf("delete edge:[%s -> %s] weight:[%d] \n", iter->first.c_str(), iterEdge->first.c_str(), iterEdge->second);
            }

            m_mapEdge.erase(iter);
        }

        // 删除顶点
        m_setVertex.erase(strVertex);
    }

    // 增加邻边
    void addEdge(const std::string& strVertex1, const std::string& strVertex2, int nWeight)
    {
        // 检查顶点是否存在
        if (m_setVertex.find(strVertex1) == m_setVertex.end())
            return;
        if (m_setVertex.find(strVertex2) == m_setVertex.end())
            return;

        // 添加 strVertex1 -> strVertex2
        {
            MAP_TOVERTEX_WEIGHT_t& mapToVertexWeight = m_mapEdge[strVertex1];
            auto iterEdge = mapToVertexWeight.find(strVertex2);
            if (iterEdge != mapToVertexWeight.end())
            {
                iterEdge->second = nWeight;

                printf("update edge:[%s -> %s] weight:[%d] \n", strVertex1.c_str(), strVertex2.c_str(), nWeight);
            }
            else
            {
                 mapToVertexWeight.insert( std::make_pair(strVertex2, nWeight) );

                 printf("add edge:[%s -> %s] weight:[%d] \n", strVertex1.c_str(), strVertex2.c_str(), nWeight);
            }
        }

        // 添加 strVertex2 -> strVertex1
        {
            MAP_TOVERTEX_WEIGHT_t& mapToVertexWeight = m_mapEdge[strVertex2];
            auto iterEdge = mapToVertexWeight.find(strVertex1);
            if (iterEdge != mapToVertexWeight.end())
            {
                iterEdge->second = nWeight;

                printf("update edge:[%s -> %s] weight:[%d] \n", strVertex2.c_str(), strVertex1.c_str(), nWeight);
            }
            else
            {
                 mapToVertexWeight.insert( std::make_pair(strVertex1, nWeight) );

                 printf("add edge:[%s -> %s] weight:[%d] \n", strVertex2.c_str(), strVertex1.c_str(), nWeight);
            }
        }
    }

    // 删除邻边
    void delEdge(const std::string& strVertex1, const std::string& strVertex2)
    {
        // 检查顶点是否存在
        if (m_setVertex.find(strVertex1) == m_setVertex.end())
            return;
        if (m_setVertex.find(strVertex2) == m_setVertex.end())
            return;

        // 删除 strVertex1 -> strVertex2
        {
            auto iter = m_mapEdge.find(strVertex1);
            if (iter != m_mapEdge.end())
            {
                MAP_TOVERTEX_WEIGHT_t& mapToVertexWeight = iter->second;

                auto iterEdge = mapToVertexWeight.find(strVertex2);
                if (iterEdge != mapToVertexWeight.end())
                {
                    mapToVertexWeight.erase(iterEdge);
                    if (mapToVertexWeight.empty())
                    {
                        m_mapEdge.erase(strVertex1);
                    }

                    printf("delete edge:[%s -> %s] \n", strVertex1.c_str(), strVertex2.c_str());
                }
            }
        }

        // 删除 strVertex2 -> strVertex1
        {
            auto iter = m_mapEdge.find(strVertex2);
            if (iter != m_mapEdge.end())
            {
                MAP_TOVERTEX_WEIGHT_t& mapToVertexWeight = iter->second;

                auto iterEdge = mapToVertexWeight.find(strVertex1);
                if (iterEdge != mapToVertexWeight.end())
                {
                    mapToVertexWeight.erase(iterEdge);
                    if (mapToVertexWeight.empty())
                    {
                        m_mapEdge.erase(strVertex1);
                    }

                    printf("delete edge:[%s -> %s] \n", strVertex2.c_str(), strVertex1.c_str());
                }
            }
        }
    }

    
    // 计算最小生成树
    void calcMinWeightTreeByPrim(std::vector<SEdge>& vecEdge) const
    {
        std::set<std::string> setVertexLeft, setVertexRight = m_setVertex;

        if (setVertexRight.empty())
        {
            printf("no vertex! \n");
            return;
        }

        // 初使合左右顶点集合
        const std::string& strVertex = *setVertexRight.begin();
        setVertexLeft.insert(strVertex);
        setVertexRight.erase(strVertex);

        while (!setVertexRight.empty())
        {
            // 寻找从左边顶点到右边顶点的最小邻边

            std::string strFrom = "", strTo = "";
            int nMinWeight = -1;

            for (auto iterLeft = setVertexLeft.begin(); iterLeft != setVertexLeft.end(); ++iterLeft)
            {
                const std::string& strLeft = (*iterLeft);

                auto iter = m_mapEdge.find(strLeft);
                if (iter == m_mapEdge.end())
                {
                    printf("vertex:[%s] no edge! \n", strLeft.c_str());
                    return;
                }

                const MAP_TOVERTEX_WEIGHT_t& mapToVertexWeight = iter->second;

                for (auto iterEdge = mapToVertexWeight.begin(); iterEdge != mapToVertexWeight.end(); ++iterEdge)
                {
                    const std::string& strRight = iterEdge->first;

                    // 只检查到右边顶点的边
                    if (setVertexRight.find(strRight) == setVertexRight.end())
                        continue;

                    if (nMinWeight < 0 || iterEdge->second < nMinWeight)
                    {
                        strFrom = strLeft;
                        strTo = strRight;
                        nMinWeight = iterEdge->second;
                    }
                }
            }

            if (strTo != "")
            {
                SEdge stEdge(strFrom, strTo, nMinWeight);
                vecEdge.push_back(stEdge);

                setVertexLeft.insert(strTo);
                setVertexRight.erase(strTo);
            }
        }
    }
};

int main(int argc, char* argv[])
{
    CThroughMatrix throughMatrix;    
    
    throughMatrix.addVertex("V0");
    throughMatrix.addVertex("V1");
    throughMatrix.addVertex("V2");
    throughMatrix.addVertex("V3");
    throughMatrix.addVertex("V4");
    throughMatrix.addVertex("V5");
    throughMatrix.addVertex("V6");

    throughMatrix.addEdge("V0", "V1", 4);
    throughMatrix.addEdge("V0", "V5", 5);
    throughMatrix.addEdge("V0", "V6", 2);
   
    throughMatrix.addEdge("V1", "V0", 4);
    throughMatrix.addEdge("V1", "V2", 2);
    throughMatrix.addEdge("V1", "V6", 1);
   
    throughMatrix.addEdge("V2", "V1", 2);
    throughMatrix.addEdge("V2", "V3", 10);
    throughMatrix.addEdge("V2", "V6", 3);

    throughMatrix.addEdge("V3", "V2", 10);
    throughMatrix.addEdge("V3", "V4", 6);
    throughMatrix.addEdge("V3", "V6", 7);

    throughMatrix.addEdge("V4", "V3", 6);
    throughMatrix.addEdge("V4", "V5", 1);
    throughMatrix.addEdge("V4", "V6", 4);

    throughMatrix.addEdge("V5", "V0", 5);
    throughMatrix.addEdge("V5", "V4", 1);
    throughMatrix.addEdge("V5", "V6", 8);

    throughMatrix.addEdge("V6", "V0", 2);
    throughMatrix.addEdge("V6", "V1", 1);
    throughMatrix.addEdge("V6", "V2", 3);
    throughMatrix.addEdge("V6", "V3", 7);
    throughMatrix.addEdge("V6", "V4", 4);
    throughMatrix.addEdge("V6", "V5", 8);

    std::vector<SEdge> vecEdge;
    throughMatrix.calcMinWeightTreeByPrim(vecEdge);

    for (auto iterEdge = vecEdge.begin(); iterEdge != vecEdge.end(); ++iterEdge)
    {
        SEdge& stEdge = (*iterEdge);

        printf("edge[%s -> %s] weight:[%d] \n", stEdge.strVertexFrom.c_str(), stEdge.strVertexTo.c_str(), stEdge.nEdgeWeight);
    }

    return 0;
}

编译:
g++ -o testprim testprim.cpp -std=c++11

运行结果如下:

add vertex:[V0] 
add vertex:[V1] 
add vertex:[V2] 
add vertex:[V3] 
add vertex:[V4] 
add vertex:[V5] 
add vertex:[V6] 
add edge:[V0 -> V1] weight:[4] 
add edge:[V1 -> V0] weight:[4] 
add edge:[V0 -> V5] weight:[5] 
add edge:[V5 -> V0] weight:[5] 
add edge:[V0 -> V6] weight:[2] 
add edge:[V6 -> V0] weight:[2] 
update edge:[V1 -> V0] weight:[4] 
update edge:[V0 -> V1] weight:[4] 
add edge:[V1 -> V2] weight:[2] 
add edge:[V2 -> V1] weight:[2] 
add edge:[V1 -> V6] weight:[1] 
add edge:[V6 -> V1] weight:[1] 
update edge:[V2 -> V1] weight:[2] 
update edge:[V1 -> V2] weight:[2] 
add edge:[V2 -> V3] weight:[10] 
add edge:[V3 -> V2] weight:[10] 
add edge:[V2 -> V6] weight:[3] 
add edge:[V6 -> V2] weight:[3] 
update edge:[V3 -> V2] weight:[10] 
update edge:[V2 -> V3] weight:[10] 
add edge:[V3 -> V4] weight:[6] 
add edge:[V4 -> V3] weight:[6] 
add edge:[V3 -> V6] weight:[7] 
add edge:[V6 -> V3] weight:[7] 
update edge:[V4 -> V3] weight:[6] 
update edge:[V3 -> V4] weight:[6] 
add edge:[V4 -> V5] weight:[1] 
add edge:[V5 -> V4] weight:[1] 
add edge:[V4 -> V6] weight:[4] 
add edge:[V6 -> V4] weight:[4] 
update edge:[V5 -> V0] weight:[5] 
update edge:[V0 -> V5] weight:[5] 
update edge:[V5 -> V4] weight:[1] 
update edge:[V4 -> V5] weight:[1] 
add edge:[V5 -> V6] weight:[8] 
add edge:[V6 -> V5] weight:[8] 
update edge:[V6 -> V0] weight:[2] 
update edge:[V0 -> V6] weight:[2] 
update edge:[V6 -> V1] weight:[1] 
update edge:[V1 -> V6] weight:[1] 
update edge:[V6 -> V2] weight:[3] 
update edge:[V2 -> V6] weight:[3] 
update edge:[V6 -> V3] weight:[7] 
update edge:[V3 -> V6] weight:[7] 
update edge:[V6 -> V4] weight:[4] 
update edge:[V4 -> V6] weight:[4] 
update edge:[V6 -> V5] weight:[8] 
update edge:[V5 -> V6] weight:[8] 
edge[V0 -> V6] weight:[2] 
edge[V6 -> V1] weight:[1] 
edge[V1 -> V2] weight:[2] 
edge[V6 -> V4] weight:[4] 
edge[V4 -> V5] weight:[1] 
edge[V4 -> V3] weight:[6] 

可以看到最小生成树的生成过程为:
edge[V0 -> V6] weight:[2]
edge[V6 -> V1] weight:[1]
edge[V1 -> V2] weight:[2]
edge[V6 -> V4] weight:[4]
edge[V4 -> V5] weight:[1]
edge[V4 -> V3] weight:[6]

即如下的图:


image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容