End-to-End Incremental Learning

Abstract

We address this issue with our approach
to learn deep neural networks incrementally, using new data and only a small
exemplar set corresponding to samples from the old classes.
distillation loss + cross-entropy loss
end-to-end
CIFAR-100 + ImageNet(ILSVRC 2012)

Introduction

While this is trivial to accomplish for most people (we learn to recognize
faces of new people we meet every day), it is not the case for a machine learning system.

incremental deep learning的几个特点:(1)能从流数据进行训练,classes可以以任何顺序,在任何时间出现。(2)在old and new classes有好的performance。(3)合理的模型参数和内存要求.(4)端到端学习机制,联合更新分类器和特征表示。

representative memory component
cross-distilled loss, a combination of two loss functions
any deep learning architecture can be adapted to our incremental learning framework, with the only requirement being the replacement of its original loss function with our new incremental loss.

Related Work

Lifelong learning is akin to transferring knowledge acquired on old tasks to the new ones.
Never-ending learning, on the other hand, focuses on continuously acquiring data to improve existing classifiers or to learn new ones.

本文的方法增加了一个exemplar set,增强knowledge representation of the old classes
本文的方法随着new classes的增加,对原网络的大小改变很小。
iCaRL的data representation和classifier是decoupled。
end-to-end fashion

Model

image.png

To help our model retain the knowledge acquired from the old classes, we use a representative memory (Sec. 3.1) that stores and manages the most representative samples from the old classes.

Representative memory

两种memory setup:(1)K固定,class越多,每个class的memory size越小。(2)每个class的memory size固定,class越多,K越大。
memory perform two operations:selection of new samples to store, and removal of leftover samples.

Cross-distilled loss function

image.png

image.png

Implementation Details

MatConvNet
40 epochs + 30 epochs balanced fine-tuning
learning rate:0.1 first 40 epochs,
is divided by 10 every 10 epochs
mini-batches: 128
weight decay:0.0001
momentum:0.9
L2-regularization and random noise on the gradients
dataset: CIFAR100(resnet32) + ImageNet(ILSVRC 2012)(resnet18)
K=2000
CIFAR100: normalize dividing by 255, subtracting the mean

好词好句

state-of-the-art results
catastrophic forgetting
dramatic decrease
when training with new classes added incrementally
using new data and only a small exemplar set corresponding to samples from the old classes.
a loss composed of a distillation measure
Our incremental training is achieved while eeping the entire framework end-to-end, i.e., learning
the data representation and the classifier jointly,
targeted at real-world applications
Although some attempts have been made to address this, most of the previous models still suffer from ...
(see Sec. 3.1)
As detailed in Sec. 4
Alternative strategies
The main drawback of all these approaches is ...
Based on our empirical results, we set T to 2 for all our experiments.
Best viewed in color.

结构

Introduction
challenges
example
traditional models
ideal system
address task in this paper

incremental deep learning 的几个特点

existing approaches for incremental learning

main contribution

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352