2018-01-07数据分析师每天都在做什么

炒股界有个不成文的规律:当卖菜的大妈都在讨论股票时,熊市就要来了。其他新鲜事物亦同。当我妈都开口问我:大数据、互联网是什么,听说好挣钱的样子。我就知道大数据有多火了。

图片来自于网络

大数据虽然火,但大数据价值还远远未发挥,大数据的使用效率还非常低。作为大数据的前身——小数据,能发挥多大的价值?做小数据分析的数据分析师每天都在做些什么?一直在从事小数据分析的我,今天来帮大家揭秘。

互联网普及也才十来年时间,所以基于互联网的数据分析并没有多少历史可言。拥有多维度数据和数据分析能力的公司比例并不高,大多数公司决策主要靠经验和拍脑袋。

要做数据分析,公司首先要有“获取数据”的能力,线上数据获取需要研发团队介入以及合作公司配合,线下数据需要对用户做引导和标识,不再赘述。

拥有数据后,数据分析师主要工作有四类:

1.从0到1搭建数据分析体系

2.数据分析工具化,产品化

3.支撑领导、部门决策的专题分析及业务方向探索

4.数据规范制定及提升数据质量等基础工作

一、从0到1搭建数据分析体系

大部分公司还处于此阶段,可能是全新搭建,可能是新业务线搭建。

1.搭建数据监控体系

搭建数据分析体系第一步是搭建数据监控体系,定期查看业务发展情况,让业务发展结果可量化,可衡量。

通过这套监控体系,业务侧可以得到实时或者准实时的效果反馈,根据业务效果指导业务决策;领导层可以了解业务发展情况,做到心中有数。

那这套数据监控体系到底包含哪些内容?——没有标准答案,主要看业务目标。从实现思路上,可以做业务拆解:整个公司或者整个部门要实现的结果目标是什么?结果目标可以拆分为几个小目标?在小目标实现上,需要实现哪些过程指标?要想实现过程指标,需要多少预算,什么资源?

业务拆解后,要监控哪些过程指标和结果指标,就一目了然。

2.根据业务监控体系,洞察业务问题

数据监控体系能让领导及业务相关同事了解业务结果。对于规模或比例变动较大的指标,数据分析师就需要了解业务原委:是行业变动导致?公司战略方向调整?还是市场格局发生变化?亦或是新技术巨变?公司产品迭代漏洞?对于行业、业务深度理解,将有助于快速定位问题关键点。

3.提出业务优化方案

根据对数据、业务理解及与业务部门沟通,提出可能的潜在影响因素的业务假设。对于明显影响效果的因素,优化之,如产品迭代中的漏洞等;对于不明朗、不确定因素,进行AB测试,根据数据反馈验证业务假设。

二、数据分析工具化,产品化

从0到1搭建数据分析体系是解决“有数据可用”的问题;让数据分析产品化是解决“让数据易用”问题,是提升数据使用效率和发挥数据更大价值的手段。

常见的数据产品就是商业智能系统(Business Intelligence),数据产品部门会根据数据使用情况,优先上线使用人数众多、对业务决策有关键影响的数据报表。

对于使用频繁,涉及人数较多的数据,数据分析师需要提出数据报表需求,供业务、产品、市场、财务等部门使用。

三、支撑领导、部门决策的专题分析及业务方向探索

如果说前两部分属于常规分析,第三部分就是专项分析。专项分析大多是一次性分析,使用频率低。专项分析的提出可能是部门要进行业务方向的新探索,可能是领导想要验证自己的新想法,可能是已有数据中反应出来的新问题。

要做专项分析,数据分析师需要自己获取数据,清洗加工数据,分析数据,得出数据结论。现有数据在时间维度、指标口径、新字段关联上都无法满足分析需求,而数据提取可能就要耗上几天时间。可谓“台上一分钟,台下十天功”!如果你有个“有想法”的领导,天天标新立异提需求,而你又不精通业务,无法马上判断是否具有分析意义和分析价值,那可真要披星戴月搞数据了。

四、数据规范制定及提升数据质量等基础工作

为了完成以上三部分工作,像制定数据规范、提升数据质量这些基础工作就必不可少。

数据规范性是个系统性工程,在数据系统搭建之初,就需要考虑好。数据分析师日常工作中,接触更多的是提升数据质量:数据是否准确,数据是否有效,可用数据比例是否足够用于分析。

当然,现在大多数公司还无法做到打通所有数据系统,统一数据源。在使用任何数据时,数据分析师都需要校验,确保数据准确无误,这是所有分析工作的基础。

这就是我的工作日常:搭建数据分析体系、数据分析产品化、专项分析及基础保证数据质量等工作。听完后,你还想入坑吗?

#蔷薇记#: 记录生活之美和智慧之妙。

这是蔷薇石原创的第91篇文章。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,793评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,567评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,342评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,825评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,814评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,680评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,033评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,687评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,175评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,668评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,775评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,419评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,020评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,206评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,092评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,510评论 2 343

推荐阅读更多精彩内容

  • //我所经历的大数据平台发展史(三):互联网时代 • 上篇http://www.infoq.com/cn/arti...
    葡萄喃喃呓语阅读 51,180评论 10 200
  • Android 自定义View的各种姿势1 Activity的显示之ViewRootImpl详解 Activity...
    passiontim阅读 171,454评论 25 707
  • 夜归,进门,“妈妈”!儿子浅浅的叫了一声。噢,儿子一直没睡,等着我呢,心里顿觉温暖。不由得亲了亲脸颊,又来了个婴儿...
    巧玲珑678阅读 364评论 0 0
  • 独自坐在步行街的街头,人流如织,有乞讨的老奶奶过来,她根本不记得几分钟前我已给过她,我看着满手的小吃,已无力再拿,...
    阿勒尔阅读 275评论 0 0
  • 关于记忆或深或浅;关于思念,亦浓亦淡。凝一滴雨露,聆听花的微笑;抚一曲琴音,任云卷云舒。遇见,别问是劫是缘。 ——...
    小崔哥阅读 597评论 0 5